
THE GREEN LAKE WATERSHED PHOSPHORUS PRIORITIZATION TOOL

OCTOBER 2016

TABLE OF CONTENTS

THE GREEN LAKE WATERSHED PHOSPHORUS PRIORITIZATION TOOL	0
THE GREEN LAKE WATERSHED PHOSPHORUS PRIORITIZATION TOOL	3
Executive Summary	3
Background	3
Project Goals	5
Methods	6
Development of Nutrient Loading Priority Areas	6
Field-Level Implementation Scenarios	7
Project Cost and Funding Gap	7
Interactive Map	8
Green Lake Watershed Phosphorus Prioritization Tool	9
PPT Results	9
Project Cost and Funding Gap	10
Outreach	12
Works Cited	14
APPENDIX A: NLPA INTRODUCTION	16
A. MODELS	16
1. SWAT, Total Phosphorus Yield (Ibs. /acre)	16
2. Erosion Vulnerability Assessment of Agricultural Lands (EVAAL)	16
B. DATA INPUTS	17
1. USGS Monitors- Active	17
2. Total Number of BPM Install in Green Lake County	17
3. Green Lake Buffer Assessment Project	
4. Soil Types	
5. CropScape- Cropland Data Layer (CDL)	
APPENDIX B: Long-Term Reduction Scenarios	19
Table 1: Basic Information	
Table 2: 25 X 2025 Plan: 25% Phosphorous Load Reduction by 2025	
Table 3: 35 X 2035 Plan: 35% Phosphorous Load Reduction by 2035	
Figure 1: Annual Implementation Cost and P Load Reduction	20
Table 4: Annual Implementation Plan	20
Figure 2: Soft Practices Implementation Plan	21

Figure 3: Hard Practices Implementation Plan	
APPENDIX C: Overview Maps	
Map1: Green Lake Watershed, Wisconsin Nutrient Load Priority Areas	
Map 2: Green Lake Watershed, Wisconsin SWAT Model	23
Map 3: Green Lake Watershed, Wisconsin EVAAL Model	
APPENDIX D: NLPA Snapshots	
APPENDIX E: Conservation Best Practices	
PRACTICE: COVER CROPS	48
PRACTICE: CRITICAL AREA PLANTING	51
PRACTICE: FILTER STRIP	52
PRACTICE: GRASSED WATERWAY	53
PRACTICE: MULCH TILL	54
PRACTICE: NO TILL	55
PRACTICE: NUTRIENT MANAGEMENT	56
PRACTICE: STREAMBANK PROTECTION	57
APPENDIX F: Funding Opportunities Available for Best Management Practices	in the Green
APPENDIX F: Funding Opportunities Available for Best Management Practices Lake Watershed, WI	
	58
Lake Watershed, WI	58 58
Lake Watershed, WI	58
Lake Watershed, WI EPA 319 Watershed Grants Urban Nonpoint Source & Storm Water Management Grant Program	
Lake Watershed, WI EPA 319 Watershed Grants Urban Nonpoint Source & Storm Water Management Grant Program USDA-NRCS Farm Bill Programs	
Lake Watershed, WI EPA 319 Watershed Grants Urban Nonpoint Source & Storm Water Management Grant Program USDA-NRCS Farm Bill Programs USDA-NRCS Conservation Innovation Grants (CIG)	
Lake Watershed, WI EPA 319 Watershed Grants Urban Nonpoint Source & Storm Water Management Grant Program USDA-NRCS Farm Bill Programs USDA-NRCS Conservation Innovation Grants (CIG) Regional Conservation Partnership Program (RCPP	
Lake Watershed, WI EPA 319 Watershed Grants Urban Nonpoint Source & Storm Water Management Grant Program USDA-NRCS Farm Bill Programs USDA-NRCS Conservation Innovation Grants (CIG) Regional Conservation Partnership Program (RCPP Great Lakes Restoration Initiative (GLRI)	
Lake Watershed, WI EPA 319 Watershed Grants Urban Nonpoint Source & Storm Water Management Grant Program USDA-NRCS Farm Bill Programs USDA-NRCS Conservation Innovation Grants (CIG) Regional Conservation Partnership Program (RCPP Great Lakes Restoration Initiative (GLRI) Fund for Lake Michigan	58 58 58 58 58 59 59 59 59 59 59 60
Lake Watershed, WI EPA 319 Watershed Grants Urban Nonpoint Source & Storm Water Management Grant Program USDA-NRCS Farm Bill Programs USDA-NRCS Conservation Innovation Grants (CIG) Regional Conservation Partnership Program (RCPP Great Lakes Restoration Initiative (GLRI) Fund for Lake Michigan APPENDIX G: Case Studies	58 58 58 58 58 59 59 59 59 59 60 60
Lake Watershed, WI EPA 319 Watershed Grants Urban Nonpoint Source & Storm Water Management Grant Program USDA-NRCS Farm Bill Programs USDA-NRCS Conservation Innovation Grants (CIG) Regional Conservation Partnership Program (RCPP Great Lakes Restoration Initiative (GLRI) Fund for Lake Michigan APPENDIX G: Case Studies Coalition to Support Iowa Farmers (CSIF) (IA):	58 58 58 58 58 59 59 59 59 59 60 60 60
Lake Watershed, WI. EPA 319 Watershed Grants Urban Nonpoint Source & Storm Water Management Grant Program. USDA-NRCS Farm Bill Programs. USDA-NRCS Conservation Innovation Grants (CIG) Regional Conservation Partnership Program (RCPP. Great Lakes Restoration Initiative (GLRI) Fund for Lake Michigan APPENDIX G: Case Studies. Coalition to Support Iowa Farmers (CSIF) (IA): Wilmette Partnership, Rogue River Project (OR):	58 58 58 58 58 59 59 59 59 59 60 60 60 60 60

THE GREEN LAKE WATERSHED PHOSPHORUS PRIORITIZATION TOOL OUTLINE

Executive Summary

Big Green Lake has a long-term trend of water quality decline, in large part from excessive sediment and phosphorus loading from the 107 square mile watershed. A 2015 Soil and Water Assessment Tool (SWAT) watershed model estimated that Green Lake receives an average of 23,960 pounds of phosphorus loading annually.

In 2013, a Lake Management Plan (LMP) was developed for Green Lake in an attempt to guide water quality efforts for the lake. While the LMP team has had much success, areas of non-point source pollution remain difficult to identify, quantify and prioritize. Delta Institute worked closely with the Green Lake Association and LMP team to develop the Green Lake Watershed Phosphorus Prioritization Tool (PPT) as a decision-making tool as it relates to agricultural non-point source pollution.

The PPT identifies 12 nutrient loading priority areas (NLPAs) in the watershed. Hypothetical annual phosphorus reduction goals of 25% by 2025 and 35% by 2035 within NLPAs are based on field-level implementation scenarios of five soft and hard best-practices: Mulch tillage, no-till, cover crops, filter strips, and grassed waterways. These phosphorus reduction goals are not based on water quality goals, but could be recalibrated once results from an ongoing lake model equate water quality goals with phosphorus reduction goals.

The total installation cost of these implementation scenarios is \$600,900 (25% reduction by 2025) and \$1.8 million (35% reduction by 2035). Assuming EQIP funding at 25%, 50% and 75%, the maximum funding gap ranges from \$488,300 (25% reduction by 2025) to \$1.4 million (35% reduction by 2035) based on the field implementation scenarios.

The Delta Institute recommends that the PPT be used to prioritize ongoing efforts, to inform potential new strategies, and to seek additional funding for BMPs to achieve the Green Lake watershed's phosphorus reduction goals.

Background

Big Green Lake ('Green Lake', Green Lake County, Wisconsin) is known for its cold- and warm-water fishing, recreation, and aesthetic beauty. With a surface area of 7,346 acres and a maximum depth of 236 feet, it is Wisconsin's deepest natural inland lake. Green Lake contains a vast volume of water,

nearly 250 billion gallons (or 762,000 acre-feet). If the lake were to be emptied, normal stream flow conditions would require at least 20 years for it to completely fill again.

While all lakes naturally age over long periods of time, a lake's aging can be significantly accelerated by human activities throughout the watershed. Green Lake's watershed is 107 square miles and spans Green Lake County (63 square miles, or 58%), Fond du Lac County (44 square miles, or 41%), and Winnebago County (1 square mile, or 1%). Urban areas, including the cities of Green Lake and Ripon, and shoreline residences along the lake's 25-mile perimeter account for 3% of its land use [1]. Agricultural areas account for 57% of Green Lake's watershed [1]. Forty percent of the watershed is made up wetlands, forests, open water and other natural areas [1].

Nutrient and sediment loading originating from sources throughout the lake's watershed can threaten lake health, recreational pastimes and local economic development. The impact of unpredictable factors – such as the introduction of aquatic invasive species; more intense, more frequent rainfall events; and fluctuations in crop markets that impact total agricultural acres in the Conservation Reserve Program – have the potential to further degrade the lake's water quality.

Green Lake's water quality trends are validated by a long history of data collection. Birge and Juday, the founders of limnology based at University of Wisconsin-Madison, collected dissolved oxygen measurements in Green Lake beginning in 1905 [2]. Sediment cores extracted from the lake bottom in the 1990s allowed for phosphorus and sediment accumulation dating back to the late 1800s [3]. These data show that Green Lake's water quality began to degrade after European settlement in the 1840s with substantial phosphorus accumulation after the 1940s to the present [3].

Results from a 2015 Soil and Water Assessment Tool (SWAT) model by Baumgart estimated that, on average, Green Lake receives 23,960 pounds of phosphorus annually [4]. The SWAT model used inputs of land cover, land use, tillage practices, nutrient management, soil materials, and stream flows from 1998-2012. Average annual discharge and loads from the Ripon Municipal Wastewater Treatment Plant were included in the model calibration and validation simulations [4].

While phosphorus concentrations fluctuate on an annual and seasonal basis, the 5-year June-August average phosphorus concentration measured by the U.S. Geological Survey near the lake's surface is 17.2 μ g/L (confidence intervals range from 14.4 – 18.3 μ g/L) [6]. This range nearly exceeds threshold water quality standards of 15 μ g/L established by the Wisconsin Department of Natural Resources [7].

Furthermore, dissolved oxygen at mid- and bottom-lake depths is often below the lowest recommended concentration of 5 mg/L when the lake is stratified into warm- and cold-water layers [7]. In 2009, for example, mid-lake dissolved oxygen concentrations were 0.3 mg/L, but other years are similar.

As a reflection of these long-term trends, in 2014, the Wisconsin Department of Natural Resources (WDNR) classified Green Lake as an impaired water body due to low dissolved oxygen content from phosphorus loading [8]. Green Lake's long-term water quality trends are likely the consequence of upstream impacts, among other factors. While pollution from individual point sources can be identified, quantified and addressed, non-point pollution from agricultural and urban sources remains an understudied issue in the Green Lake watershed. Non-point source pollution comes

from non-concentrated areas spread over a wide area, making solutions more difficult to identify, prioritize, and rectify.

These and other concerns are reflected in the Lake Management Plan (LMP) for Green Lake, a document approved by the WDNR in 2013 that outlines Green Lake's challenges, watershed management priorities, and strategies to improve water quality [1]. The Green Lake LMP contains a phosphorous reduction goal of 15% by 2023. This initial goal is not based directly on water quality goals or on lake/watershed models.

However, the Green Lake Association is sponsoring a 3-year dissolved oxygen monitoring and lake modeling study (2016-2019) through a \$200,000 WDNR Lake Protection Grant. Once complete, the initiative will provide management strategies and nutrient reductions required to achieve water quality goals.

Key partners of the LMP team include the Green Lake Association (GLA), Green Lake Sanitary District (GLSD), Green Lake and Fond du Lac County Land Conservation Departments, WDNR, and Natural Resources Conservation Service (NRCS), among others. The LMP team is committed to reducing nutrient and sediment loading to Green Lake in an attempt to improve its water quality over the long term.

Prior to the development of the Green Lake LMP, various lake management projects were being implemented by various groups. This disparity made it difficult to prioritize, track and leverage lake management efforts. The Green Lake LMP and its team have synthesized these lake management efforts into a single guiding document. Since then, the LMP team has been successful at implementing a series of urban, shoreline and agricultural practices throughout the watershed.

Among other accomplishments, the LMP team has made conservation progress within the watershed's estimated 32,400 acres of tillable land [9]. By 2012-2017, the team will have installed over 100 agricultural best management practices (BMPs), valued at over \$1.2 million, in Green Lake County within the Green Lake watershed alone. These projects are made possible by funding from the NRCS' National Water Quality Initiative, which has awarded the Green Lake watershed as one of three priority watersheds in the state for six consecutive years [10]. Collaboration between the NRCS, GLSD, Green Lake County Land Conservation Department and WDNR allows the majority of these BMPs to be installed free-of-charge to landowners. In exchange, the practices are installed and maintained in perpetuity.

In 2016, the GLSD also received \$200,000 from a WDNR Lake Protection Grant to install agricultural BMPs in the Fond du Lac County portion of the Green Lake watershed. Several projects were secured by a GLSD-sponsored Ag Outreach Coordinator who continues to work directly in Fond du Lac County in the Green Lake watershed to increase the adoption of conservation practices.

Project Goals

While there is a time delay in upstream conservation practices and downstream water quality improvements, Green Lake has not achieved its water quality goals, particularly as it relates to its impairment listing. Among other strategies, continued phosphorus-reducing practices are therefore required.

The LMP team wants to achieve its water quality goals in the most efficient way possible by targeting areas of high nutrient and sediment loading with cost-effective, science-supported practices. Delta Institute has worked closely with the GLA and other key partners to identify non-point source pollution in the agricultural sector within the watershed.

The resulting Green Lake Watershed Phosphorus Prioritization Tool (PPT) seeks to develop an effective decision-making tool for the LMP team to reduce sediment and phosphorus loading in the Green Lake watershed. In particular, the goals of the PPT are to:

- Identify agricultural nutrient loading priority areas throughout the Green Lake watershed,
- Determine the **location and type of best practices** needed to achieve milestone annual phosphorus reduction goals of 25% by 2025 and 35% by 2035 through field-level implementation scenarios,
- Calculate the **funding gap** to install best practices that achieve milestone reduction goals, assuming projects are funded by the NRCS' Environmental Quality Incentives Program (EQIP) program at 25%, 50% and 75%,
- Compile a list of potential **grant opportunities** that may cover the remaining funding gap, and
- Provide the information necessary to enhance agricultural outreach that **increases the adoption of conservation practices** in the watershed.

Methods

Development of Nutrient Loading Priority Areas

Delta Institute conducted a nutrient loading analysis of the Green Lake watershed using a series of watershed models that incorporate information about topography, soils, rainfall and land cover.

An Erosion Vulnerability Assessment for Agricultural Lands (EVAAL) for the Green Lake watershed was developed to identify areas that have moderate- to high-erosion indexes created by sheet, rill, and gully erosion. These results were compared to Green Lake's 2015 Soil and Water Assessment Tool (SWAT) watershed model [4] and other phosphorus loading data.

Existing agricultural BMPs (and those currently planned until 2017) were mapped based on information provided by the Green Lake County Land Conservation Department. Similar records and cost-share programs do not exist in Fond du Lac County.

Results were used to identify 12 nutrient loading priority areas (NLPAs) – six in Green Lake County and six in Fond du Lac County – based on high-density clusters of high nutrient loading and low-density clusters of existing BMPs. These 12 NLPAs total 6,862 tillable acres in the watershed with an estimated 15,096 pounds of phosphorus loss annually (or 2.2 pounds/acre).

These NLPAs were identified using EVAAL model results, aerial photographs, and other relevant digital data. The LMP team could consider field-verifying these NLPAs and adjust the prioritization based on those findings in combination with EVAAL model results.

Delta recommends that the LMP team focus on these areas when implementing future conservation practices, as they offer the highest rate of return for sediment and phosphorus reduction. However, best practices can be implemented for phosphorus reductions throughout the watershed, regardless of whether they fall within or outside of the NLPAs.

Refer to appendix A for a more detailed summary of watershed models and inputs used. Refer to appendix C for maps of NLPAs, as well as SWAT and EVAAL watershed model results.

Field-Level Implementation Scenarios

Within each NLPA, Delta conducted field-level implementation scenarios to identify hypothetical areas suitable for a suite of various soft and hard best-practices: Mulch tillage, no-till, cover crops, filter strips, and grassed waterways. These five BMPs were chosen because scientific studies show they offer the greatest potential in reducing phosphorus loads [11],[12],[13]. They are also cost-effective, low-impact, and common in the agricultural conservation community. Incorporation of these practices has the potential to decrease sediment loading and ultimately reduce maintenance costs for retention ponds and other hard practices currently installed in the watershed.

Hypothetical BMPs installation sites were identified based on available data, watershed model results, and geographic characteristics visible from aerial maps. The accuracy of the NLPAs could be enhanced or modified in the future based on field verification.

The quantity and size of these BMPs were determined so that all field-level implementation scenarios from the 12 NLPAs totaled milestone annual phosphorus reduction goals of 25% (or 5,990 pounds) and 35% (or 8,386 pounds). These annual reduction goals are for annual edge-of-field phosphorus reductions that do not account for phosphorus delivery to Green Lake (based on distance from the lake, stream slope, etc.). Note that any phosphorus reduction goals based on delivery to the lake requires higher edge-of-field phosphorus reductions to account for this difference.

Refer to appendix D for detailed field-level implementation scenarios within each NLPA.

Project Cost and Funding Gap

Each BMP's size, estimated phosphorus reduction, and cost were based on data provided by the Environmental Protection Agency (EPA) Region 5 model [14], USDA-NRCS cost estimates [15], and other related data.

BMP costs are estimated based on the following assumptions:

Mulch Tillage (Soft Practice)

Mulch tillage is managing the amount, orientation, and distribution of crop and other plant residue on the soil surface year-round while limiting soil-disturbing activities used to grow crops in systems where the entire field surface is tilled prior to planting.

The PPT assumes increased participation in mulch tillage annually, reaching a maximum of 500 acres in annual participation by 2035. As an annual practice, the cost estimate assumes annual reimbursement of time for all participants.

No-Till (Soft Practice)

No-till is managing the amount, orientation, and distribution of crop and other plant residue on the soil surface year-round while limiting soil-disturbing activities to only those necessary to place nutrients, condition residue, and plant crops.

The PPT assumes increased participation in no-till agriculture annually, reaching a maximum of 950 acres in annual participation by 2035. As an annual practice, the cost estimate assumes yearly reimbursement of time for all participants.

Cover Crops (Soft Practice)

Cover crops are grasses, small grains, legumes, forbs, and/or other herbaceous plant established for seasonal cover and conservation purposes.

The PPT assumes increased participation in cover crop planting, reaching a maximum of 1,300 acres in annual participation by 2035. As an annual practice, the cost estimate assumes yearly reimbursement for all participants for time and cover crop seed.

Filter Strips (Soft Practice)

A filter strip is an area of herbaceous vegetation that removes contaminants from overland flows. Filter strips differ from grassed waterways because they are usually adjacent to stream or creek banks and they do not have the parabolic shape of a grassed waterway.

The PPT assumes 2,000 linear feet of filter strips installed annually, totaling 20,000 linear feet by 2025 (and 20,000 linear feet by 2035). The project cost includes the cost of design and installation, but does not include maintenance or administration costs.

Grassed Waterways (Hard Practice)

A grassed waterway is a shaped or graded channel that is established with suitable vegetation to convey surface water at a non-erosive velocity using a broad and shallow cross-section to a stable outlet.

The PPT assumes 1,000 to 2,000 linear feet of grassed waterways installed annually, totaling 30,000 linear feet by 2035. The project cost includes the cost of design and installation, but does not include maintenance or administration costs.

Retention ponds and stream restoration projects were not included in any field-level implementation scenarios. Given that these practices are significantly more expensive than the five incorporated BMPs, project costs and funding gaps would increase accordingly, if utilized. However, these five implementation scenario BMPs have the potential to reduce field erosion and ultimately decrease maintenance costs of retention ponds currently installed in the watershed.

Refer to appendix B for long-term cost projections to reduce phosphorus by 25% by 2025 and 35% by 2035 by installing identified soft and hard practices. Refer to appendix E for definitions, benefits, and parameters for the conservation best practices recommended in the PPT. Refer to appendix F for funding opportunities available for BMPs the Green Lake watershed.

Interactive Map

Delta produced an interactive, GIS-based map of the EVAAL watershed model, SWAT watershed model, NLPAs, current documented BMPs, and other parameter layers. The map has been created to provide a "bird's eye view" of the data that was compiled and to assist the LMP team in identifying the potential priority areas for future BMPs. Delta recommends that the LMP maintain this GIS-based map for spatial representation and recordkeeping of installed BMPs.

Given privacy considerations of this dataset, please contact the Green Lake Association or Delta Institute if you are interested in receiving access to the interactive map.

Green Lake Watershed Phosphorus Prioritization Tool

Based on ongoing success and research, historic and current monitoring, and the analysis conducted by Delta Institute, the Green Lake LMP team is well-positioned to achieve phosphorus reductions in the watershed. The challenge of achieving annual reduction goals, however, is magnified by unknown variables (i.e. crop prices) and changing realities on the ground (i.e. acres removed from the Conservation Reserve Program).

Additional strategies are therefore needed to maintain consistent progress in nutrient reductions to achieve water quality goals. Delta recommends that the LMP team use the Green Lake Watershed Phosphorus Prioritization Tool (PPT) to guide its current BMP strategy to prioritize projects, to extend current funding, and to seek additional funding to achieve its nutrient reduction goals.

With the information provided in this report, the PPT can also help to strengthen or develop incentive programs or other initiatives locally-tailored by farmers and/or the LMP team to increase the adoption of conservation practices in the watershed.

PPT Results

The Green Lake LMP recommends the adoption of a 10-year (10% phosphorus load decrease), 20year (30% phosphorus load decrease), and 50-year phosphorus reduction goal [1]. In combination with ongoing lake model research, Delta's example scenario will help to guide long-term phosphorus reduction within the watershed. The PPT will also provide useful information if the LMP team proceeds with updating its LMP team to meet the criteria for the Environmental Protection Agency's Nine Key Element Plan, which could increase funding for the watershed.

Delta believes the Green Lake LMP team can achieve a 25% phosphorus load reduction by 2025 and a 35% phosphorus reduction by 2035 if BMPs are implemented within the NLPAs (see table below for details). The 25% by 2025 (5,970 pounds) and a 35% by 2035 (8,386 pounds) are reduction goals based on load calculations from the EPA Region 5 Model. While these goals are obtainable and tangible, further research and implementation needs to be completed to target specific reduction goals in order improve water quality to the point of being de-listed from the WDNR's impaired waters list. Delta strongly believes that, if the LMP team implements the proposed PPT strategy, Green Lake will be a vibrant and a healthier ecosystem in the years to come.

To achieve 25% phosphorus reduction by 2025 from agricultural non-point source areas, 5,970 pounds per year of phosphorus will need to be reduced within the NLPA. The estimated total cost for BMP implementation needed to reach this goal by 2025 is \$600,935 (including a 15% contingency). Depending on the how the LMP team decides to solicit, track and administer the program, there may be additional \$5,000 to \$25,000 administration cost per year to implement the program. While implementation of BMPs is only occurring in the NLPAs, the phosphorus reductions are at a watershed scale.

To achieve 35% phosphorus reduction by 2035 from agricultural non-point source areas, 8,308 pounds per year of phosphorus will need to be reduced within the NLPA. The estimated total cost

for BMP implementation needed to reach this goal by 2035 is \$1,755,142 (including a 15% contingency). Depending on the how the LMP team decides to solicit, track and administer the program, there may be additional \$5,000 to \$35,000 administration cost per year to implement the program. While implementation of BMPs is only occurring in the NLPAs, the phosphorus reductions are at a watershed scale.

For more detailed information regarding funding for this long-term reduction strategy, see appendix B.

Project Cost and Funding Gap

While the total cost of a 25% and 35% phosphorus reduction goal ranges from \$600,965 to \$1.7 million, accordingly, a large portion of these BMP projects may be covered through existing funding opportunities. This funding gap will increase if retention ponds and/or shoreline restoration projects, not currently included in field implementation scenarios, are implemented.

Delta recommends that the LMP team promote existing funding opportunities to reduce the overall funding gap. Existing programs include the U.S. Department of Agriculture-NRCS's Environmental Quality Incentive Program (EQIP), Wildlife Habitat Incentive Program (WHIP), Conservation Reserve Program (CRP), Conservation Security Program (CSP), and others. These existing federal programs are already set up for potential cost share opportunities for private landowners.

In addition to these funding opportunities, various LMP team members have designated funds for BMP projects. The GLSD is willing to commit \$500,000 to \$1 million towards BMP projects between 2015 and 2025. The Green Lake County Land Conservation Department has funds set aside for a future filter strip program to help reduce nutrient loading throughout the Green Lake watershed in Green Lake County.

Another opportunity for BMP cost-share funding includes the NRCS' National Water Quality Initiative (NWQI) program. As of 2016, the NRCS has awarded NWQI funding to the Green Lake watershed in Green Lake County for six consecutive years. The LMP team may want to consider encouraging the NRCS to transfer this program to the Green Lake watershed in Fond du Lac County.

While these programs provide funding directly to farmers, there are other funding opportunities that the GLA and other LMP team partners can request to fund BMPs in the watershed. All of these funding opportunities are outlined in appendix F.

Delta encourages the LMP team to use the success of existing BMP programs and the information provided by NLPAs to apply for additional funding to reduce phosphorus loading in the Green Lake watershed.

The following table outlines the total cost of reducing phosphorus by 25% and 35% in the watershed. It also provides a funding gap if EQIP funds only cost-share 25%, 50% and 75%.

Hypothetical scenarios to achieve	Percent of BMP cost covered by EQIP funding								
25% and 35% phosphorus reductions	25% covered	50% covered	75% covered						
HYPOTHETICAL SCENARIO 1: 25% PHOSPHORUS REDUCTION BY 2025 (5,990 POUNDS PF PHOSPHORUS) Soft-practice cost: \$ 360,360									
<u>Hard-practice cost: \$ 162,192</u> Total cost: \$522,552		Total cost + 15% coi	ntingency: \$ 600,935						
Estimated EQIP funding received by 2025	\$ 112,700	\$ 225,350	\$ 338,000						
Estimated funding gap through 2025	\$ 488,300	\$ 375,600	\$ 262,900						
2025 Funding	Gap: \$ 112,700 –	\$488,300							
35% PHOSPHC	ETICAL SCENAR PRUS REDUCTIONNDS OF PHOSPH	ON BY 2035							
Soft-practice cost: \$ 1,301,430 <u>Hard-practice cost: \$ 242,172</u> Total cost: \$1,543,602		Total cost + 15% cont	ingency: \$ 1,775,142						
Estimated EQIP funding received by 2035	\$ 332,850	\$ 665,700	\$ 998,500						
Estimated funding gap through 2035	\$ 1,442,300	\$ 1,109,500	\$ 776,600						
2035 Funding Gap: \$ 332,850 – \$1,442,300									

Outreach

The LMP team has members that represent key agriculturally-focused conservation groups in the Green Lake watershed, including the Green Lake and Fond du Lac County Land Conservation Departments, Green Lake Sanitary District, NRCS, and WDNR. Many of these partners also have strong relationships with certified crop advisors, crop consultants, and other conservation advocacy groups.

Delta encourages these select LMP partners to reach out to local conservation advocacy groups to share the LMP team's long-term nutrient reduction vision and to review the NLPAs identified in the PPT. In addition to quarterly LMP meetings, the team may wish to arrange additional biannual meeting with these conservation advocacy groups to keep them up-to-date on LMP efforts and to coordinate strategies, priorities, and goals.

Of course, implementation of the PPT and other nutrient-reduction strategies will require the voluntary landowner participation on private property. Increasing the participation of these

practices could be initially guided by social science. In 2016/2017, the GLA is collaborating with Aaron Thompson, UW-Extension, to facilitate an agricultural social science survey within the watershed. The voluntary assessment seeks to better understand agricultural producers' land management decisions and to seek input for solutions that collectively benefit crops, soil health, and downstream water resources. Delta recommends that the LMP team use survey results to guide future BMP and/or incentives programs to increase the adoption of conservation practices in the Green Lake watershed. When those survey results are used in combination with the PPT, it may be possible to work with willing landowners in NLPAs to maximum the impact and minimize the cost of nutrient reductions.

As part of an outreach campaign, the LMP team should coordinate various conservation workshops and field days to inform landowners about agricultural BMPs, conservation programs, and other opportunities and projects underway within the watershed. Information contained in the PPT may also provide useful information to inform ongoing incentive strategies or to develop new conservation programs locally-tailored by farmers and/or the LMP team.

The target audience for workshops and field days should include landowners within the 12 NLPAs. During conservation workshops, Delta recommends that the LMP team position programming around shared goals and how BMPs can benefits landowners' operations. Key partners can showcase beneficial BMPs within the watershed, implementation strategies, and conservation programs that provide cost assistance or cost-share. Given timing of planting and harvest, at least one workshop should be help during the winter months.

Field days provide landowners the chance to network with their peers and to learn about innovating farming and conservation practices. Topics could include cover crop installation, pasture conservation and renovation, nutrient management, soil health and stewardship, and no-till practices.

Delta also recommends creating marketing material to promote the PPT concept. This includes, but is not limited to: flyers in agriculture retail stores, quarterly newsletters, a website, and social media outreach. The LMP team can promote upcoming meetings, workshops, field days, and functions through these platforms. Farmers also gather the majority of their information through their peers. Delta recommends that the LMP team reach out to active and influential farmers in the watershed to share team initiatives with them personally.

Delta recognizes that cover crops and other soft practices recommended in the NLPAs are not currently utilized in the watershed as frequently as retention ponds and streambank protection projects, which represent 30% and 12% of current BMP projects, respectively. However, over the long term, soft practices recommended in the PPT have the ability to change soil structure, increase soil aggregate stability, increase infiltration, and reduce runoff, among other benefits.

Increasing the adoption of these less common strategies will require farm management changes guided in part by one-one-one communication with individual landowners. Based on feedback from the LMP team, there is currently limited staff capacity to do this. Delta recommends that the LMP team consider hiring an agronomist, cover crop specialist or certified crop adviser whose time could

be shared between Green Lake and Fond du Lac County. This individual could be responsible for meeting with landowners, organizing field days, as well as soliciting, tracking and administering the program.

The GLA and LMP team have worked with many universities and research programs in the past to provide science-based data on Green Lake and the watershed. Delta encourages that partnerships are continued with Ripon College, University of Wisconsin, Nelson Institute for Environmental Studies, University of Wisconsin Extension Service, and others.

Works Cited

- [1] Lake Management Planning Team for Green Lake, "A Lake Management Plan for Green Lake: Green Lake, Wisconsin," 2013.
- [2] E. a. J. C. Birge, The Inland Lakes of Wisconsin: The Dissolved Gases of the Water and Their Biological Significance, Wisconsin Geological and Natural History Survey, 1914.
- [3] P. Garrison, "What Green Lake's sediments tell us about its history," Wisconsin DNR PUB-SS-966 2002, 2002.
- [4] P. Baumgart, "Application of the Soil and Water Assessment Tool (SWAT) to Evaluate Non-Point Source Phosphorus and TSS Loads in the Big Green Lake Watershed, Wisconsin," University of Wisconsin-Green Bay, 2015.
- [5] P. Baumgart, "Green Lake un-routed sub watershed TSS and P average annual loads and yields (1978-98) as simulated with SWAT 98 model," 2000.
- [6] D. Robertson, C. McDonald and S. Prellwitz, Water Quality Improvements in Big Green Lake: Understanding the causes of hypoxia and high phosphorus concentrations in order to formulate actions to delist Big Green Lake, U.S. Geological Survey, Wisconsin Department of Natural Resources, Green Lake Association, 2015.
- [7] Wisconsin Department of Natural Resourcse, *Chapter NR 102: Water Quality Standards for Wisconsin Surface Waters.*
- [8] Wisconsin Department of Natural Resources, "2014 Impaired Waters List," [Online]. Available: file:///C:/Users/GLA_DP/Downloads/2014%20Impaired%20Waters%20List%20Complete %20(9).pdf.
- [9] USDA-NRCS, "CropScape Cropland Data Layer," [Online]. Available: https://nassgeodata.gmu.edu/CropScape/. [Accessed 8 September 2016].

[10] NRCS, "NRCS National Water Quality Initiative (NWQI) FY2016 Watersheds," [Online].

] Available: file:///C:/Users/GLA_DP/Downloads/2016-nwqi-watersheds-final-02292016-fullsized.pdf. [Accessed 8 September 2016].

[11] Fiener, Peter, and Karl Auerswald. "Effectiveness of Grassed Waterways in Reducing Runoff and Sediment Delivery from Agricultural Watersheds." (n.d.): n. pag. Print.

[12] Gantzer, Clark, and Stephen Anderson. "Grass Barrier and Vegetative Filter Strip Effectiveness Is Reducing Runoff, Sediment, Nitrogen and Phosphorus Loss." (n.d.): n. pag. Web.

[13] McDowell, L.L., and K.C. McGregor. "Nitrogen and Phosphorus Losses in Runoff from No-Till Soybeans." (n.d.): n. pag. Web.

[14] USEPA, "Region 5 Model," [Online]. Available:http://it.tetratech-ffx.com/steplweb/models\$docs.htm

[15] USDA-NRCS, "Electronic Field Office Technical Guide," [Online]. Available: https://efotg.sc.egov.usda.gov/treemenuFS.aspx

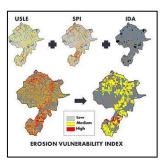
APPENDIX A: NLPA INTRODUCTION

For this project, Delta used several data sets and models to identify Nutrient Load Priority Areas (NLPAs) and the Best Management Practices that are most applicable for each NLPA. The NLPAs identified are areas within the Green Lake and Silver Creek watershed that have the greatest potential for erosion, which is an indication of high nutrient loading. Identifying NLPAs will assist the LCDs in prioritizing areas where BMP implementation BMPs will be most impactful.

The NLPAs were identified using various geospatial models and datasets pertaining to land use and geophysical land characteristics. The section outlines all of the data sources and models used in the NLPA identification and prioritization process, and explains why each source was included in the process.

A. MODELS

1. SWAT, Total Phosphorus Yield (lbs. /acre) **Source:** Lower Fox River Watershed SWAT model, UWGB


Description: Created by the USDA Agriculture Research Service, the SWAT model is a tool that predicts the impacts of various water, sediment, and nutrient management practices. This SWAT model operates on a river basin scale and on daily time steps, allowing the tool to predict long-term impacts in large river basins. The model's primary inputs include the watershed configuration, climate and precipitation data, land cover, and land management. This model is used to quantify loading of many non-point source pollutants, but for the purpose of this project was used to estimate Phosphorous loading in each of the sub-watersheds within the Green Lake and Silver Creek watersheds. This tool is widely accepted in the field of land management and conservation both nationally and internationally, and is commonly used to assess the efficiency of BMPs.

Rational for Incorporating Data: The Total Phosphorus (TP)- lbs./acre is a simulated yield of the amount of Phosphorus that is being lost annually in each designated HUC 14. This data was incorporated in our NLPA prioritization because it provides reliable Phosphorus loads in each-sub watershed.

Potential Limitations: The TP data is generated through a model using a simulated matrix, but is not data from actual farm/field operation and practices. Actual farm/field operations may vary from model outputs.

2. Erosion Vulnerability Assessment of Agricultural Lands (EVAAL) **Source:** Wisconsin Department of Natural Resources/Fond du Lac LCD/Green Lake GIS Department

Description: The EVAAL model was created by the Wisconsin Department of Natural Resources and the Bureau of Water Quality to assist in the prioritization of areas within a watershed that may be vulnerable to water erosion. The tool evaluates vulnerability to sheet, rill, and gully erosion based on the model inputs. The models inputs include: topography, soil characteristics, precipitation, and land cover.

With this information, the model outputs an "Erosion Vulnerability Index" (EVI). This index uses a

simple scale from Low EVI to high EVI. Areas with higher EVI are more vulnerable to erosion, making them more likely to export nutrients downstream. This tool generates the EVIs separately for sheet vs rill erosion using the "Universal Soil Loss Equation" (USLE), and gully erosion using the "Stream Power Index" (SPI). The model also deprioritizes areas that are not hydrologically connected to surface water, "Internal Drainage Areas" (IDA). The summation of these data points result in the EVI.

Rational for Incorporating Data: This tool provides information that allows them to prioritize areas on a field level that are most susceptible to erosion, while other models are only able to generate this information by HUCs or larger hydraulic defined boundaries

Potential Limitations: The output data generated is only as reliable and accurate as the data entered into the model, and only represent a simulation rather than actual data.

B. DATA INPUTS

1. USGS Monitors- Active **Source:** United States Geological Survey

Description: USGS Monitors are water data collection systems that provide data on the water quality. An active monitor has collected time-series (automated) data within the last 183 days (6 months), or it has collected discrete (manually collected) data within 397 days (13 months).

Rational for Incorporating Data: Water quality data from USGS monitors provide actuate and site localized data regarding nutrient levels where stationed. Using this information may also prove valuable when applying for funds that require stream-level monitoring and annual reports.

Potential Limitations: There may be more monitors in the Green Lake watershed that may be inactive. There may also be information related to grab sampling that might not be readily available.

2. Total Number of BPM Install in Green Lake County **Source:** Green Lake County LCD

Descriptions: This data layer includes the soil and water conservation practices, other management techniques, and social actions that have been already been implemented in Green Lake County.

Rational for Incorporating Data: Identifying the location of existing BMPs will assist the GLA and Land Conservation Departments in targeting areas to implement and apply new BMPs. The BMPs included in this dataset are: cover crops, filter strips, grassed waterways, diversion terraces, sediment basins, animal waste storage, and stream bank protection.

Potential limitations: The BMPs identified are not an exhaustive list of all implemented BMPs in the Green Lake and Silver Creek watersheds. The BMPs mapped are practices that have been cost shared through federal or state dollars that have been identified by local conservation groups. Delta identified available data of existing conservation practices and due to the limitations of the data, and we do not believe the existing BMP information would impact plans to achieve a 25% P reduction through 2025.

3. Green Lake Buffer Assessment Project **Source:** Green Lake County LCD

Descriptions: This dataset includes an inventory of vegetative buffer condition and spatial coverage, areas of convergence, soil types, watersheds, land use, bank condition, and physical stream status.

Rational for Incorporating Data: The Green Lake Buffer Assessment Project will assess the location and spatial extent of riparian buffer, identify impaired buffers, recognize floodplain areas, locate areas bank instability, classify target areas for precision buffers, and locate target areas for upland conservation practices. This will assist the LCDs in identifying areas along streams that could benefit from BMPs related to stream bank erosion.

Potential limitations: N/A

4. Soil Types

Source: United States Department of Agriculture (USDA)

Descriptions: The unconsolidated mineral or organic matter on the surface of the Earth that has been subjected to and shows effects of genetic and environmental factors of: climate (including water and temperature effects) and macro- and microorganisms, conditioned by relief, acting on parent material over a period of time.

Rational for Incorporating Data: Soil descriptions and characteristics assist in identifying what BMPs would be most effective in that specific location. For example, we focused on areas with soils characterized as sandy loam/ loam, as these soil type are more susceptible to erosion.

Potential limitations: All soil information was identified using the Geo Spatial Gateway and the Web Soil Survey provided by USDA. Soil samples should be taken at the field-level scale by a professional to accurately depict soil information at that specific location.

5. CropScape- Cropland Data Layer (CDL) **Source:** United States Department of Agriculture (USDA)

Descriptions: The Cropland Data Layer (CDL) is a land cover product depicting detailed field-level information on crop and non-crop categories and locations covering the contiguous United States.

Rational for Incorporating Data: This geospatial data offers independent statistical estimates of crop acreage throughout the growing season on a parcel level. The crops produced on a specific parcel of land provide an important piece of information when determining which BMPs would be most impactful.

Potential limitations: Acreage counts are not official estimates.

APPENDIX B: Long-Term Reduction Scenarios

The section below details the amount of Phosphorus that needs to be reduced and the approximate amount of funds that are need to implement BMP's to meet the goals outlined. This section also includes a year by year implementation plan of selected soft and hard BMP practices. These BMP's were selected for their adaptability and farmer willingness of implementation. The data that was used to calculate these numbers came from the Green Lake Nutrient Load Priority Area Snapshots and the Field Level Implementation Scenarios in Appendix D.

Table 1: Basic Information

Green Lake Watershed	Data
Total Tillable Acres in Green Lake Watershed (CropScape 14') (Acres)	32,400
Estimated P Loss in Green Lake Watershed (SWAT 15') (lbs.)	23,960
Estimated P loss per Acre in Green Lake Watershed (lbs./acre)	0.75
Nutrient Load Priority Area	
Total Tillable area in NLPA Scenarios (Acres)	6,862
Estimated P Loss in NLPA (SWAT 15') (lbs.)	15,096
Estimated P loss per Acre in NPLA (lbs./acre)	2.2

Table 2: 25 X 2025 Plan: 25% Phosphorous Load Reduction by 2025

	PRACTICE	Annual Phosphorous (Ib) reduced by 2025	Annual % Phosphorous reduction by 2025	Acres/ year implemented by 2025	Annual Cost to Maintain Goal	TOTAL cost to Reach Goal (2016- 2025)
	Mulch Till	850	4%	500	11800	\$ 61,600.00
Soft	No Till	820	3%	500	14750	\$ 77,000.00
Practice	Cover Crop	1660	7%	1000	42480	\$ 221,760.00
	Soft Practice Total	3330	14%	2000	69030	\$ 360,360.00
				Linear Feet Active by 2025		
Hard	Filter Strips	600	3%	20000	\$ 2,926	\$ 27,032
Practices	Grass Waterways	2040	9%	20000	\$ 14,632	\$ 135,160
H	Hard Practice Total	2640	11%	40000	\$ 17,558	\$ 162,192
	TOTAL	5970	25%	NA	\$ 86,588	\$ 522,552
AllPractices	TOTAL with 15% Contingency	NA	NA	NA	\$ 99,577	\$ 600,935

Table 3: 35 X 2035 Plan: 35% Phosphorous Load Reduction by 2035

	PRACTICE	Annual Phosphorous (Ib) reduced by 2035	Annual % Phosphorous reduction by 2035	Acres/ year implemented by 2035	Annual Cost to maintain goal	TOTAL cost to Reach Goal (2016- 2035)
	Mulch Till	850	4%	500	13800	\$ 190,600.00
Soft	NoTill	1640	7%	1000	34500	\$ 329,000.00
Practice	Cover Crop	2158	9%	1300	64584	\$ 781,830.00
	Soft Practice Total	4648	19%	2800	112884	\$ 1,301,430.00
				Linear Feet Active by 2035		
Hard	Filter Strips	600	3%	20000	\$ -	\$ 27,032
Practices	Grass Waterways	3060	13%	30000	\$ 8,556	\$ 215,140
	Hard Practice Total	3660	15%	50000	\$ 8,556	\$ 242,172
	TOTAL	8308	35%	NA	\$ 121,440	\$ 1,543,602
AllPractices	TOTAL with 15% Contingency	NA	NA	NA	\$ 139,656	\$ 1,775,142

*A 15% contingency has been added to the total cost of each plan to account for increases and inflations. All percentages were rounded to the nearest whole number.

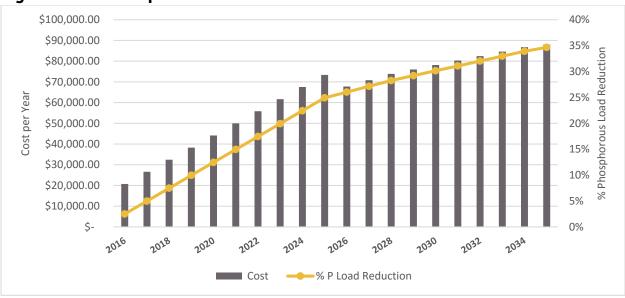
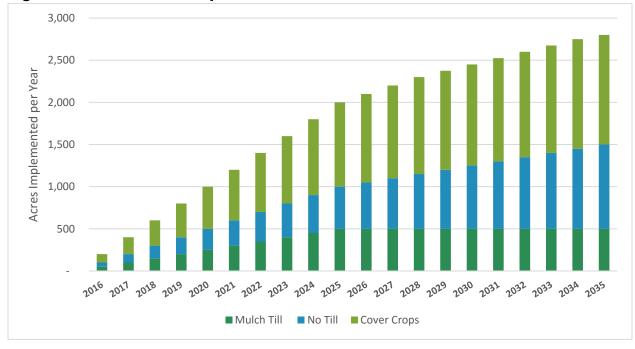



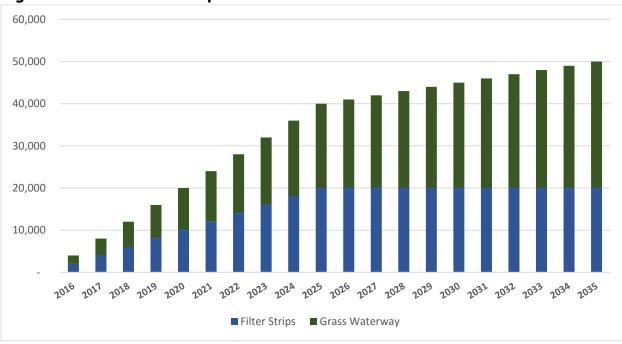
Figure 1: Annual Implementation Cost and P Load Reduction

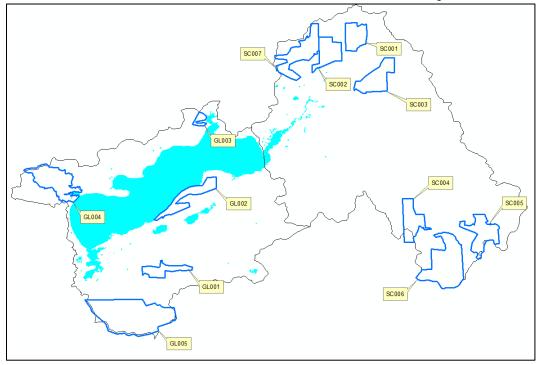
Table 4: Annual Implementation Plan

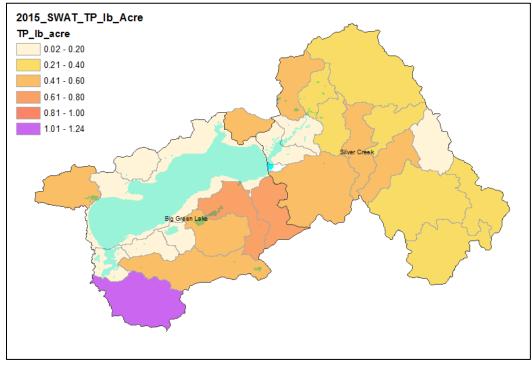
	SOFT PR	ACTICES	(Acres)		RACTICES ar Feet)	ALL PRACTICES				RACTICES	
	Mulch Till	No Till	Cover Crops	Filter Strips	Grass Waterway		Annual Cost	C	Cumulative Cost	% Annual P Load Reduction	
2016	50	50	100	2,000	2,000	\$	20,730	\$	20,730	2%	
2017	100	100	200	4,000	4,000	\$	27,112	\$	47,842	5%	
2018	150	150	300	6,000	6,000	\$	33,727	\$	81,569	7%	
2019	200	200	400	8,000	8,000	\$	40,577	\$	122,146	10%	
2020	250	250	500	10,000	10,000	\$	47,660	\$	169,806	12%	
2021	300	300	600	12,000	12,000	\$	54,978	\$	224,784	15%	
2022	350	350	700	14,000	14,000	\$	62,530	\$	287,314	17%	
2023	400	400	800	16,000	16,000	\$	70,315	\$	357,629	20%	
2024	450	450	900	18,000	18,000	\$	78,335	\$	435,964	22%	
2025	500	500	1,000	20,000	20,000	\$	86,588	\$	522,552	25%	
2026	500	550	1,050	20,000	21,000	\$	81,300	\$	603,852	26%	
2027	500	600	1,100	20,000	22,000	\$	86,376	\$	690,228	27%	
2028	500	650	1,150	20,000	23,000	\$	91,574	\$	781,802	28%	
2029	500	700	1,175	20,000	24,000	\$	95,760	\$	877,562	29%	
2030	500	750	1,200	20,000	25,000	\$	100,032	\$	977,594	30%	
2031	500	800	1,225	20,000	26,000	\$	104,390	\$	1,081,984	31%	
2032	500	850	1,250	20,000	27,000	\$	108,834	\$	1,190,818	32%	
2033	500	900	1,275	20,000	28,000	\$	113,364	\$	1,304,182	33%	
2034	500	950	1,300	20,000	29,000	\$	117,980	\$	1,422,162	34%	
2035	500	1,000	1,300	20,000	30,000	\$	121,440	\$	1,543,602	35%	

*A 2% increase has been applied year over year to account for inflation and potential increases in BMP implementation over the next 20 years.

Figure 2: Soft Practices Implementation Plan

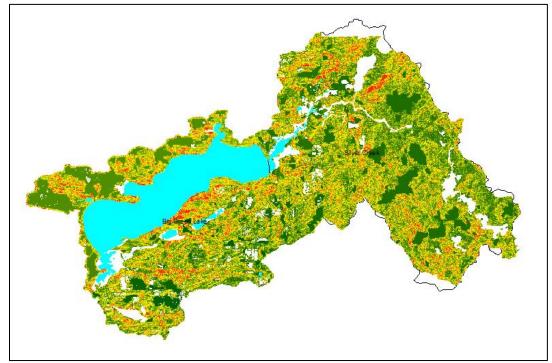



Figure 3: Hard Practices Implementation Plan


The graphs above illustrate the cost per year associated with annual Phosphorous reductions require to meet the specified reduction goal. The P reductions are represented as annual reductions in the graphs

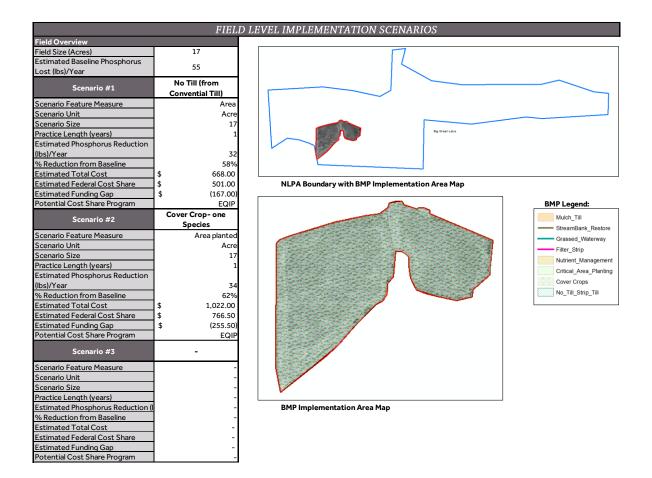
above, which assume the implementation acreage for annual practices, such as cover crops, increases from one year to the next.

APPENDIX C: Overview Maps


Map1: Green Lake Watershed, Wisconsin Nutrient Load Priority Areas

Map 2: Green Lake Watershed, Wisconsin SWAT Model

Map 3: Green Lake Watershed, Wisconsin EVAAL Model



APPENDIX D: NLPA Snapshots

ATION	GREEN					delta institute		
ION GL001 332 175 157 6-12						Store the store		
2012 82.5	2013 103.0	2014 A 45.1	verage 76.87	% Change (2012-2014) -45%	Trend Line	Dr.		
					\leq	NLPA Regional Overview		
14.7 2.2 19.6 4.2 - 1.1 -	10.0 - 19.1 - 0.4 - - -	2.0 0.2 19.3 0.4 - - -	8.90 1.20 19.33 2.30 0.40 1.10	-86% -91% -2% -90% - - -				
-	-		-	-		NLPA Section Boundary		
- - -	-		- - -					
- - 59.8 -	- - 36.3 -	- - 43.8 -	- - 46.6 -	- - -27% -				
AND LICE	UICTOD	Ζ Ε <i>D</i> ΩΜ΄	0010 00)11 (Acros)		NLPA Orthophoto Map		
					Trend Line	- <u>2</u>		
- 1111.6 - 0.4	- 143.9 - 0.4	- 0.2 137.7 - 0.4	- 0.2 131.1 - 0.4	- - 23% - 0%				
	5.5		11.4	-15%	~	NLPA EVAAL map		
0.2	0.2	0.2	- 0.2 	- 0%		Erosion Potential Legend: High High-Medium Low-Medium		
						Low		
	TOP		01/71/7		T) T) T			
			OMINE					
are moderately bedrock. These underlying loam ranges from 0 to is about 762 mm	ries consists of deep to a lithic soils formed in ny till are on gro 30 percent. Mo n (30 inches). Mo	olomite and in the Slope cipitation	The Sebewa seri drained or very p loamy outwash a sandy outwash o and stream terra are moderately o outwash. Slope r annual precipital and mean annual	es consists of poorly drained nd the underl n outwash pla ices on terrac deep to the gr anges from 0 cion is about 8 temperature	fvery deep, poorly The Ossian series consists of very deep, poorly d soils formed in drained soils formed in silty alluvium. These soils an iying gravelly and on flood plains, low stream terraces, upland ains, valley trains, angeways, and lake basins. Slope ranges from 0 celandscapes. They 4 percent. Mean annual air temperature is about 9 ravelly and sandy degrees C. Mean annual precipitation is about 850 36 mm (33 inches), millimeters.			
	ATTON REATIONS ICON GLOO1 332 175 157 6-12 DUSE HI 2012 82.5 3.8 14.7 2012 19.6 4.2 19.6 4.2 19.6 4.2 19.6 4.2 19.6 4.2 19.6 4.2 59.8 - 59.8 - 59.8 - 59.8 - 59.8 - - 59.8 - - - - - - - - - - - - -	ATTONS ITERATIONS ITERATIONS ITERATIONS INTERATIONS ION GLOOI 332 175 157 6-12 D USE HISTORY F 2012 2013 82.5 103.0 3.8 0.9 14.7 19.6 19.1 4.2 - <tr< td=""><td>All GLOON GLOOI 332 175 157 157 6-12 D USE HISTORY FROM 201 ZO12 ZO13 ZO14 A 8 0.9 64.5 14.7 10.0 2.0 19.6 19.1 19.3 4.2 - 0.4 - 0.4 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 2012 2013 2014 - - <</td><td>AREA S ON GLOOI 332 175 157 6-12 D USE HISTORY FROM 2012-2014 2012 2013 2014 Average 8. 0.9 64.5 25.07 14.7 10.0 2.0 8.90 19.6 19.1 19.3 19.33 4.2 - 0.4 2.30 - 0.4 - 0.40 1.1 - 1.10 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - <</td><td>AREA SNAPSHO CON GLOON 332 175 157 6-12 D USE HISTORY FROM 2012-2014 (Acres) % Change 2012 2013 2014 [Average % Change 2012 2013 2014 [Average % Change 2012 2012 2014 Average % Change 2 0 2 1 1 2 2 2 2 2 <th 2"2"2"<="" colspan="2" td=""><td>AREA SNAPSHOT ON GLOID Solution of the secondary of the secondary</td></th></td></tr<>	All GLOON GLOOI 332 175 157 157 6-12 D USE HISTORY FROM 201 ZO12 ZO13 ZO14 A 8 0.9 64.5 14.7 10.0 2.0 19.6 19.1 19.3 4.2 - 0.4 - 0.4 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 2012 2013 2014 - - <	AREA S ON GLOOI 332 175 157 6-12 D USE HISTORY FROM 2012-2014 2012 2013 2014 Average 8. 0.9 64.5 25.07 14.7 10.0 2.0 8.90 19.6 19.1 19.3 19.33 4.2 - 0.4 2.30 - 0.4 - 0.40 1.1 - 1.10 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - <	AREA SNAPSHO CON GLOON 332 175 157 6-12 D USE HISTORY FROM 2012-2014 (Acres) % Change 2012 2013 2014 [Average % Change 2012 2013 2014 [Average % Change 2012 2012 2014 Average % Change 2 0 2 1 1 2 2 2 2 2 <th 2"2"2"<="" colspan="2" td=""><td>AREA SNAPSHOT ON GLOID Solution of the secondary of the secondary</td></th>	<td>AREA SNAPSHOT ON GLOID Solution of the secondary of the secondary</td>		AREA SNAPSHOT ON GLOID Solution of the secondary

RECOMMENDED BMP'S FOR IMPLEMENTATION IN NLPA										
BMP's	Cover Crops	Critical Area planting	No Till and Strip Till	Management/	Much Till	Filter Strip	Grassed Waterway	Streambank and Shoreline Protection		
Recommendation for Implementation	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes		

*See appendix for Best Management Practices definitions and descriptions

FIELD LEVEL IMPLEMENTATION NOTES AND ASSUMPTIONS

Field level implementation scenarios were picked base on available data, EVAAL model results, and geographic characteristics visible in orthophotographic maps. BMPs, size, practice length, estimated Phosphorus reduction, and cost estimations were modeled based on data provided by the Green Lake WI "Field Office Technical Guide", and resources mentioned below

Estimated Total Phosphous Loading and Reduction was calculated using the EPA Region 5 model. Reductions may vary depending on field characteristics. Phosphorus Reductions may also vary depending on different models used. Phosphorus Loading Reductions are for example purposes only.

Funding Source that is listed is the most appropriate for the Best Management Practice (BMP) modeled in each scenario. Other funding sources may also be appropriate.

CRP= Conservation Reserve Program.

EQIP= Environmental Quality Incentive Program.

See Appendix B for funding and cost share program details

REFERENCES:

USDA National Agricultural Statistics Service, "CropScape". http://nassgeodata.gmu.edu/CropScape/

USDA Natural Resource Conservation Service. http://www.nrcs.usda.gov/wps/portal/nrcs/site/national/home/

Nutrient Stewardship, "Implementing the 4RS". http://www.nutrientstewardship.com/implement-4rs

NRCS, Green Lake WI "Field Office Technical Guide", https://efotg.sc.egov.usda.gov/toc.aspx?CatID=16711

GREEN LAKE ASSOCIATION

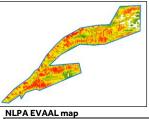
GREEN LAKE NUTRIENT LOAD PRIORITY AREA SNAPSHOT

delta institute

GENERAL DISCRIPTION							
Nutrient Load Priority Area ID	GL002						
Total Acres	526						
Tillable Acres	344						
Non Tillable Acres	182						
Average Slope %	6-12						

TILLABLE LAI	ND USE H	ISTORY I	KOM 20	12-2014		
Crop Type	2012	2013	2014	Average	% Change (2012-2014)	Trend Line
Corn	201.0	112.1	137.9	150.33	-31%	<
Soybeans	23.1	71.4	41.6	45.37	80%	\sim
Winter Wheat	3.3	13.6	15.8	10.90	379%	
Oats	-	0.7	0.4	0.55	-	\sim
Alfalfa	43.6	36.5	47.1	42.40	8%	\sim
Other Hay/Non Alfalfa	-	9.6	0.9	5.25	-	\sim
Dry Beans	-	-	-	-	-	
Peas	-	-	-	-	-	
Sweet Corn	-	-	-	-	-	
Spring Wheat	-	-	-	-	-	
Christmas Trees	-	-	0.2	0.20	-	
Rye	-	-	0.4	0.40	-	
Barren	-	-	0.2	0.20	-	
Sod/Grass Seed	-	-	-	-	-	
Sugarbeets	-	-	-	-	-	
Herbs	-	-	-	-	-	
Cabbage	-	-	-	-	-	
Barley	-	-	-	-	-	
Grass/Pasture	80.5	85.4	99	88.3	23%	
Dbl Crop WinWht/Corn	-	-	-	-	-	

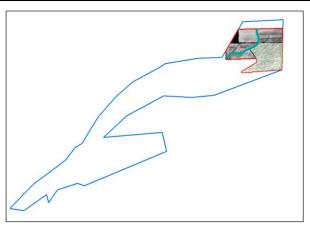
NON-TILLABLE L	AND USE	HISTOR	Y FROM	2012-2	014 (Acres)
Land Use Type	2012	2013	2014	Average	% Change	Trend Line
Fallow/Idle Cropland	-	-	0.7	0.7	-	
Shrubland	0.2	0.2	0.2	0.2	0%	
Deciduous Forest	66.7	68.5	72.7	69.3	9%	
Evergreen Forest	3.6	0.7	2.7	2.3	-25%	\sim
Mixed Forest	2	0.7	4.2	2.3	110%	
Woody Wetlands	47.4	51.4	45.1	48.0	-5%	\sim
Herbaceous Wetlands	10.2	27.1	11.8	16.4	16%	\sim
Open Water	15.3	16.9	18.9	17.0	24%	
Developed/Open Space	18.9	21.8	22.9	21.2	21%	-
Developed/Low Intensity	8.9	8.5	5.8	7.7	-35%	
Developed/Medium Intensity	-	-	-	-	-	
Developed/High Intensity	-	-	-	-	-	



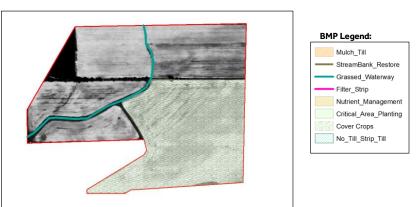
NLPA Section Boundary

NLPA Orthophoto Map

Erosion Potential Legend: High High-Medium Low-Medium Low


	TOP THREE PROMINENT SOILS IN NLPA AREA							
Soil Name	Primary Soil	Secondary Soil	Tertiary Soils					
Son Name	St. Charles Silt Loam	Lomira Silt Loam	Dodge Silt Loam					
Description	The St. Charles series consists of very deep, well drained soils on outwash plains, till plains, or stream terraces. They formed in 40 to 60 inches of loess and in the underlying loamy outwash or sandy loam till. Slope commonly is 0 to 15 percent but ranges from 0 to 30 percent. Mean annual temperature is about 11.1 degrees C (52 degrees F)., and mean annual precipitation is about 889 mm (35 inches).	The Granby series consists of very deep, poorly drained or very poorly drained soils formed in sandy outwash or sandy glaciolacustrine deposits on outwash plains, lake plains, and glacial drainageways. Slope ranges from 0 to 3 percent. Mean annual precipitation is about 889 mm (35 inches), and mean annual temperature is about 10.0 degrees C (50 degrees F).	The Dodge series consists of very deep well-drained soils formed in loess and in the underlying till on ground moraines, end moraines, and drumlins. Slope ranges from 0 to 20 percent. Mean annual precipitation is about 762 mm (30 inches). Mean annual air temperature is about 9.4 degree C (49 degrees F).					

RECOMMENDED BMP'S FOR IMPLEMENTATION IN NLPA								
BMP's	Cover Crops	Critical Area planting	No Till and Strip Till	Fertilizer and Nutrient Management/ Application	Much Till	Filter Strip	Grassed Waterway	Streambank and Shoreline Protection
Recommendation for Implementation	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes


*See appendix for Best Management Practices definitions and descriptions

	FIELI
Field Overview	
Field Size (Acres)	37
Estimated Baseline Phosphorus	104
Lost (lbs)/Year	104
Scenario #1	Grassed Waterway
Scenario Feature Measure	Linear Feet of Waterway
Scenario Unit	Linear Foot
Scenario Size	2300
Practice Length (years)	10
Estimated Phosphorus Reduction	
(lbs)/Year	96
% Reduction from Baseline	95%
Estimated Total Cost	\$ 13,700.00
Estimated Federal Cost Share	\$ 12,330.00
Estimated Funding Gap	\$ (1,370.00)
Potential Cost Share Program	CRP
Scenario #2	Cover Crop- one Species
Scenario Feature Measure	Area planted
Scenario Unit	Acre
Scenario Size	37
Practice Length (years)	1
Estimated Phosphorus Reduction	
(lbs)/Year	65
% Reduction from Baseline	64%
Estimated Total Cost	\$ 2,225.00
Estimated Federal Cost Share	\$ 1,668.75
Estimated Funding Gap	\$ (556.25)
Potential Cost Share Program	EQIP
Scenario #3	-
Scenario Feature Measure	-
Scenario Unit	-
Scenario Size	-
Practice Length (years)	-
Estimated Phosphorus Reduction (-
% Reduction from Baseline	-
Estimated Total Cost	-
Estimated Federal Cost Share	-
Estimated Funding Gap	-
Potential Cost Share Program	-

FIELD LEVEL IMPLEMENTATION SCENARIOS

NLPA Boundary with BMP Implementation Area Map

BMP Implementation Area Map

FIELD LEVEL IMPLEMENTATION NOTES AND ASSUMPTIONS

Field level implementation scenarios were picked base on available data, EVAAL model results, and geographic characteristics visible in orthophotographic maps. BMPs, size, practice length, estimated Phosphorus reduction, and cost estimations were modeled based on data provided by the Green Lake WI "Field Office Technical Guide", and resources mentioned below

Estimated Total Phosphous Loading and Reduction was calculated using the EPA Region 5 model. Reductions may vary depending on field characteristics. Phosphorus Reductions may also vary depending on different models used. Phosphorus Loading Reductions are for example purposes only.

Funding Source that is listed is the most appropriate for the Best Management Practice (BMP) modeled in each scenario. Other funding sources may also be appropriate.

CRP= Conservation Reserve Program. EQIP= Environmental Quality Incentive Program.

See Appendix B for funding and cost share program details

REFERENCES:

USDA National Agricultural Statistics Service, "CropScape". http://nassgeodata.gmu.edu/CropScape/

USDA Natural Resource Conservation Service. <u>http://www.nrcs.usda.gov/wps/portal/nrcs/site/national/home/</u>

Nutrient Stewardship, "Implementing the 4RS". http://www.nutrientstewardship.com/implement-4rs

NRCS, Green Lake WI "Field Office Technical Guide", https://efotg.sc.egov.usda.gov/toc.aspx?CatID=16711

GREEN LAKE ASSOCIATION

GREEN LAKE NUTRIENT LOAD PRIORITY AREA SNAPSHOT

delta institute

GENERAL DISCRIPTION					
Nutrient Load Priority Area ID	GL003				
Total Acres	94				
Tillable Acres	72				
Non Tillable Acres	22				
Average Slope %	2-6				

TILLABLE LAND USE HISTORY FROM 2012-2014 (Acres)						
Сгор Туре	2012	2013	2014	Average	% Change (2012-2014)	Trend Line
Corn	26.2	27.1	22.7	25.33	-13%	
Soybeans	4.9	1.1	0.4	2.13	-92%	\sim
Winter Wheat	-	-	6.0	6.00	-	
Oats	-	-	-	-	-	
Alfalfa	4.2	-	1.8	3.00	-57%	\sim
Other Hay/Non Alfalfa	0.2	2.0	1.8	1.33	800%	
Dry Beans	-	-	-	-	-	
Peas	0.2	-	-	0.20	-	\sim
Sweet Corn	-	-	-	-	-	
Spring Wheat	-	-	-	-	-	
Christmas Trees	-	-	-	-	-	
Rye	-	-	-	-	-	
Barren	-	-	-	-	-	
Sod/Grass Seed	-	-	-	-	-	
Sugarbeets	-	-	-	-	-	
Herbs	-	-	-	-	-	
Cabbage	-	-	-	-	-	
Barley	-	-	-	-	-	
Grass/Pasture	32	39.8	38.9	36.9	22%	-
Dbl Crop WinWht/Corn	-	-	-	-	-	

NON-TILLABLE L	AND USE	HISTOR	Y FROM	2012-2	014 (Acres)
Land Use Type	2012	2013	2014	Average	% Change	Trend Line
Fallow/Idle Cropland	-	-	-	-	-	
Shrubland	-	-	-	-	-	
Deciduous Forest	10.7	8.9	11.6	10.4	8%	\sim
Evergreen Forest	-	-	-	-	-	
Mixed Forest	-	-	-	-	-	
Woody Wetlands	0.9	3.3	0.4	1.5	-56%	\sim
Herbaceous Wetlands	9.1	6.2	5.1	6.8	-44%	
Open Water	-	-	-	-	-	
Developed/Open Space	1.3	0.9	1.1	1.1	-15%	\sim
Developed/Low Intensity	4.4	4.9	4.9	4.7	11%	
Developed/Medium Intensity	-	-	-	-	-	
Developed/High Intensity	-	-	-	-	-	

NLPA Regional Overview

NLPA Section Boundary

NLPA Orthophoto Map

NLPA EVAAL map

Erosion Potential Legend:			
	High		
	High-Medium		
	Low-Medium		
	Low		

TOP THREE PROMINENT SOILS IN NLPA AREA							
Soil Name	Primary Soil	Secondary Soil	Tertiary Soils				
Soli Name	Grelton Fine Sandy Loam	St. Charles Silt Loam	Kibbie Loam				
Description		loamy outwash and the underlying gravelly and sandy outwash on outwash plains, valley trains, and stream terraces on terrace landscapes. They are moderately deep to the gravelly and sandy	The Kibbie series consists of very deep, somewhat poorly drained soils on lake plains, ground moraines, outwash plains, and deltas. They formed in stratified loamy and silty glaciofluvial or glaciolacustrine deposits. Slope ranges from 0 to 6 percent. Mean annual precipitation is about 813 mm (32 inches), and mean annual temperature is about 9.4 degrees C (49 degrees F).				

RECOMMENDED BMP'S FOR IMPLEMENTATION IN NLPA								
BMP's	Cover Crops	Critical Area planting	No Till and Strip Till	Management/	Much Till	Filter Strip	Grassed Waterway	Streambank and Shoreline Protection
Recommendation for Implementation	Yes	No	Yes	Yes 28	Yes	No	Yes	No

	FIFLD	DEVEL IMPLEMENTATION SCENARIOS
Field Overview		
Field Size (Acres)	19	
Estimated Baseline Phosphorus	- 19	\sim
Lost (lbs)/Year	67	
Lost (IDS)/ Fear		
Scenario #1	Mulch Till	
Scenario Feature Measure	Area	
Scenario Unit	Acres	
Scenario Size	15	
Practice Length (years)	1	
Estimated Phosphorus Reduction	1 1	
(lbs)/Year	29	
% Reduction from Baseline	43%	
Estimated Total Cost	\$ 445.00	BMP Legend:
Estimated Federal Cost Share	\$ 333.75	
Estimated Funding Gap	\$ (111.25)	Mulch_Till
Potential Cost Share Program	EQIP	StreamBank_Rest
eternia eesterna errogram	Cover Crop- one	Grassed_Waterwa
Scenario #2	Species	- Filter_Strip
		Nutrient_Managem
Scenario Feature Measure	Area planted	Critical Area Plan
Scenario Unit	Acre	Cover Crops
Scenario Size	- 4	No_Till_Strip_Till
Practice Length (years)	1	
Estimated Phosphorus Reduction		
(lbs)/Year	29	NLPA Boundary with BMP Implementation Area Map
% Reduction from Baseline	43%	
Estimated Total Cost	\$ 240.00	
Estimated Federal Cost Share	\$ 180.00	
Estimated Funding Gap	\$ (60.00)	
Potential Cost Share Program	EQIP	232 23 23 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Scenario #3	-	Common The Manual Common Co
Scenario Feature Measure	-	
Scenario Unit	-	
Scenario Size	-	
Practice Length (years)	-	
Estimated Phosphorus Reduction	- (
% Reduction from Baseline	1 -	BMP Implementation Area Map
Estimated Total Cost	1 .	· ·
Estimated Federal Cost Share	1 -	
Estimated Funding Gap	1 .	
Potential Cast Share Brogram	- 1	

FIELD LEVEL IMPLEMENTATION NOTES AND ASSUMPTIONS

Field level implementation scenarios were picked base on available data, EVAAL model results, and geographic characteristics visible in orthophotographic maps. BMPs, size, practice length, estimated Phosphorus reduction, and cost estimations were modeled based on data provided by the Green Lake WI "Field Office Technical Guide", and resources mentioned below

Estimated Total Phosphous Loading and Reduction was calculated using the EPA Region 5 model. Reductions may vary depending on field characteristics. Phosphorus Reductions may also vary depending on different models used. Phosphorus Loading Reductions are for example purposes only.

Funding Source that is listed is the most appropriate for the Best Management Practice (BMP) modeled in each scenario. Other funding sources may also be appropriate.

CRP= Conservation Reserve Program.

Potential Cost Share Program

EQIP= Environmental Quality Incentive Program.

See Appendix B for funding and cost share program details

REFERENCES:

USDA National Agricultural Statistics Service, "CropScape". http://nassgeodata.gmu.edu/CropScape/

_

USDA Natural Resource Conservation Service. <u>http://www.nrcs.usda.gov/wps/portal/nrcs/site/national/home/</u>

Nutrient Stewardship, "Implementing the 4RS". http://www.nutrientstewardship.com/implement-4rs

NRCS, Green Lake WI "Field Office Technical Guide", <u>https://efotg.sc.egov.usda.gov/toc.aspx?CatID=16711</u>

GREEN LAKE ASSOCIATION

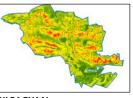
GREEN LAKE NUTRIENT LOAD PRIORITY AREA SNAPSHOT

deltainstitute

GENERAL DISCRIPT	'ION
Nutrient Load Priority Area ID	GL004
Total Acres	873
Tillable Acres	432
Non Tillable Acres	441
Average Slope %	2-6

TILLABLE LAN	ID USE H	ISTORY I	FROM 20	12-2014	l (Acres)	
Сгор Туре	2012	2013	2014	Average	% Change (2012-2014)	Trend Line
Corn	121.9	99.6	113.6	111.70	-7%	\langle
Soybeans	9.1	15.6	1.8	8.83	-80%	\frown
Winter Wheat	14.7	-	2.2	8.45	-85%	\sim
Oats	-	-	0.2	0.20	-	
Alfalfa	26.5	8.2	6.4	13.70	-76%	\sim
Other Hay/Non Alfalfa	2.7	0.4	12.9	5.33	378%	
Dry Beans	-	-	0.4	0.40	-	
Peas	1.3	-	-	1.30	-	\sim
SweetCorn	0.2	-	-	0.20	-	\sim
Spring Wheat	-	-	-	-	-	
Christmas Trees	0.7	-	-	0.70	-	\sim
Rye	-	-	0.2	0.20	-	
Barren	0.2	0.2	0.2	0.20	0%	
Sod/Grass Seed	0.2	-	-	0.20	-	\sim
Sugarbeets	-	-	-	-	-	
Herbs	-	-	-	-	-	
Cabbage	-	-	-	-	-	
Barley	-	-	-	-	-	
Grass/Pasture	254	241.5	308.5	268.0	21%	
Dbl Crop WinWht/Corn	-	-	-	-	-	

NON-TILLABLE LAND USE HISTORY FROM 2012-2014 (Acres)								
Land Use Type	2012	2013	2014	Average	% Change	Trend Line		
Fallow/Idle Cropland	0.7	0.4	4	1.7	471%			
Shrubland	0.4	2.4	0.7	1.2	75%	\sim		
Deciduous Forest	230.4	352.9	230.2	271.2	0%	\sim		
Evergreen Forest	12.2	9.1	4.9	8.7	-60%			
Mixed Forest	1.3	1.1	0.9	1.1	-31%			
Woody Wetlands	30.7	31.1	38.5	33.4	25%			
Herbaceous Wetlands	87.8	36.7	77.2	67.2	-12%	\sim		
Open Water	8.5	4.2	1.3	4.7	-85%			
Developed/Open Space	42	43.1	43.8	43.0	4%			
Developed/Low Intensity	27.4	26.5	24.9	26.3	-9%			
Developed/Medium Intensity	2.7	2.2	2.7	2.5	0%	\sim		
Developed/High Intensity	0.2	0.2	0.2	0.2	0%			

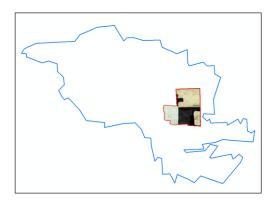

NLPA Regional Overview

NLPA Section Boundary

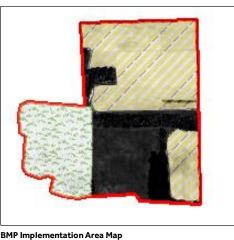
NLPA Orthophoto Map

NLPA EVAAL map

Erosion Potential Lege	Erosion Potential Legenu.				
	High				
	High-Medium				
	Low-Medium				
	Low				


TOP THREE PROMINENT SOILS IN NLPA AREA								
Soil Name	Primary Soil	Secondary Soil	Tertiary Soils					
Son Name	Kidder Fine Sandy Loam	Greiton Fine Sandy Loam	Granby Loam Fine Sand					
Description	inches). Mean annual air temperature is about 10 degrees C (50 degrees F).	deposits; in the underlying silty deposits; and, in many pedons, in loamy till on ground moraines. Slope ranges from 0 to 20 percent. Mean annual precipitation is about 762 mm (30 inches). Mean annual air temperature is about 9.4 degrees C (49	The Granby series consists of very deep, poorly drained or very poorly drained soils formed in sandy outwash or sandy glaciolacustrine deposits on outwash plains, lake plains, and glacial drainageways. Slope ranges from 0 to 3 percent. Mean annual precipitation is about 889 mm (35 inches), and mean annual temperature is about 10.0 degrees C (50 degrees F).					

RECOMMENDED BMP'S FOR IMPLEMENTATION IN NLPA									
BMP's	Cover Crops	Critical Area planting	No Till and Strip Till	Fertilizer and Nutrient Management/ Application	Much Till	Filter Strip	Grassed Waterway	Streambank and Shoreline Protection	
Recommendation for Implementation	Yes	Yes	Yes	Yes 30	Yes	Yes	Yes	Yes	


*See appendix for Best Management Practices definitions and descriptions

	FIEL
Field Overview	
Field Size (Acres)	38
Estimated Baseline Phosphorus	177
Lost (lbs)/Year	133
Scenario #1	Nurtient Management
Scenario Feature Measure	Area of NM
Scenario Unit	Acre
Scenario Size	25
Practice Length (years)	1
Estimated Phosphorus Reduction	
(lbs)/Year	46
% Reduction from Baseline	35%
Estimated Total Cost	\$ 4,200.00
Estimated Federal Cost Share	\$ 3,150.00
Estimated Funding Gap	\$ (1,050.00)
Potential Cost Share Program	EQIP
	Cover Crop- one
Scenario #2	Species
Scenario Feature Measure	Area planted
Scenario Unit	Acre
Scenario Size	13
Practice Length (years)	1
Estimated Phosphorus Reduction	
(lbs)/Year	19
% Reduction from Baseline	18%
Estimated Total Cost	\$ 790.00
Estimated Federal Cost Share	\$ 592.50
Estimated Funding Gap	\$ (197.50)
Potential Cost Share Program	EQIP
Scenario #3	-
Scenario Feature Measure	-
Scenario Unit	-
Scenario Size	-
Practice Length (years)	-
Estimated Phosphorus Reduction (I	-
% Reduction from Baseline	- 1
Estimated Total Cost	-
	-
Estimated Total Cost	

FIELD LEVEL IMPLEMENTATION SCENARIOS

NLPA Boundary with BMP Implementation Area Map

BMP implementation Area Map

FIELD LEVEL IMPLEMENTATION NOTES AND ASSUMPTIONS

Field level implementation scenarios were picked base on available data, EVAAL model results, and geographic characteristics visible in orthophotographic maps. BMPs, size, practice length, estimated Phosphorus reduction, and cost estimations were modeled based on data provided by the Green Lake WI "Field Office Technical Guide", and resources mentioned below

Estimated Total Phosphous Loading and Reduction was calculated using the EPA Region 5 model. Reductions may vary depending on field characteristics. Phosphorus Reductions may also vary depending on different models used. Phosphorus Loading Reductions are for example purposes only.

Funding Source that is listed is the most appropriate for the Best Management Practice (BMP) modeled in each scenario. Other funding sources may also be appropriate.

CRP= Conservation Reserve Program.

EQIP= Environmental Quality Incentive Program.

See Appendix B for funding and cost share program details

REFERENCES:

USDA National Agricultural Statistics Service, "CropScape". http://nassgeodata.gmu.edu/CropScape/

USDA Natural Resource Conservation Service. <u>http://www.nrcs.usda.gov/wps/portal/nrcs/site/national/home/</u>

Nutrient Stewardship, "Implementing the 4RS". http://www.nutrientstewardship.com/implement-4rs

NRCS, Green Lake WI "Field Office Technical Guide", https://efotg.sc.egov.usda.gov/toc.aspx?CatlD=16711

Land Use Type

Shrubland

Fallow/Idle Cropland

Deciduous Forest

Evergreen Forest

Woody Wetlands

Herbaceous Wetlands

Developed/Open Space

Developed/Low Intensity

Developed/High Intensity

Developed/Medium Intensity

Mixed Forest

Open Water

GREEN LAKE ASSOCIATION

GREEN LAKE NUTRIENT LOAD PRIORITY AREA SNAPSHOT

delta institute

GENERAL DISCRIPTION						
Nutrient Load Priority Area ID	GL005					
Total Acres	1952					
Tillable Acres	1607					
Non Tillable Acres	345					
Average Slope %	0-6					

TILLABLE LAND USE HISTORY FROM 2012-2014 (Acres)									
Сгор Туре	2012	2013	2014	Average	% Change (2012-2014)	Trend Line			
Corn	977.2	1021.2	722.8	907.07	-26%)			
Soybeans	128.1	157.0	395.4	226.83	209%				
Winter Wheat	14.2	21.3	67.2	34.23	373%				
Oats	-	50.3	0.7	25.50	-	\sim			
Alfalfa	96.7	34.9	56.0	62.53	-42%	<u> </u>			
Other Hay/Non Alfalfa	4.4	1.8	6.2	4.13	41%	\sim			
Dry Beans	0.7	17.6	8.7	9.00	1143%	\sim			
Peas	50.5	27.6	0.4	26.17	-99%				
SweetCorn	77.8	31.8	145.7	85.10	87%				
Spring Wheat	-	-	-	-	-				
Christmas Trees	0.2	-	-	0.20	-	\sim			
Rye	-	-	-	-	-				
Barren	-	0.7	-	0.70	-	\sim			
Sod/Grass Seed	-	-	-	-	-				
Sugarbeets	0.2	-	0.2	0.20	0%	\sim			
Herbs	-	-	0.2	0.20	-				
Cabbage	-	-	-	-	-				
Barley	-	-	-	-	-				
Grass/Pasture	230.8	192.4	201	208.1	-13%	~			
Dbl Crop WinWht/Corn	-	-	-	-	-				

NON-TILLABLE LAND USE HISTORY FROM 2012-2014 (Acres)

2013

0.2

0.7

0.2

15.6

91

4.9

45.4

24.9

-

217.5

2012

0.4

1.6

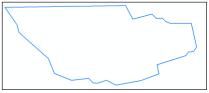
0.9

18

114.5

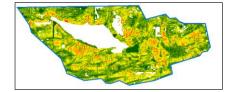
5.6

51.2


21.6

0.2

161.9


NLPA Regional Overview

NLPA Section Boundary

NLPA Orthophoto Map

NLPA EVAAL map Erosion Potential Legend: High High-Medium

Low-Medium

Soil Name	Primary Soil	Secondary Soil	Tertiary Soils
Soli Name	Plano Silt Loam	Houghton Muck	Dodge Silt Loam
Description	These soils formed in loess or other silty material and in the underlying loamy stratified outwash or sandy loam till. Slope ranges from 0 to 12 percent. The mean annual air temperature is about 8.9 degrees C (48 degrees F), and the mean annual precipitation is about 914 mm (36 inches).	organic materials more than 130 cm (51 inches) thick in depressions on lake plains, outwash plains, ground moraines, end moraines, and floodplains. Slope ranges from 0 to 2 percent.	The Dodge series consists of very deep well-draine soils formed in loess and in the underlying till on ground moraines, end moraines, and drumlins. Slop ranges from 0 to 20 percent. Mean annual precipitation is about 762 mm (30 inches). Mean annual air temperature is about 9.4 degree C (49 degrees F).

2014 Average % Change

0.2

0.4

1.1

1.1

17.1

88.7

4.9

48.4

22.1

0.2

190.9

0.2

0.7

1.1

2.2

17.8

60.7

4.2

48.5

19.8

0.2

193.3

Trend Line

75%

19%

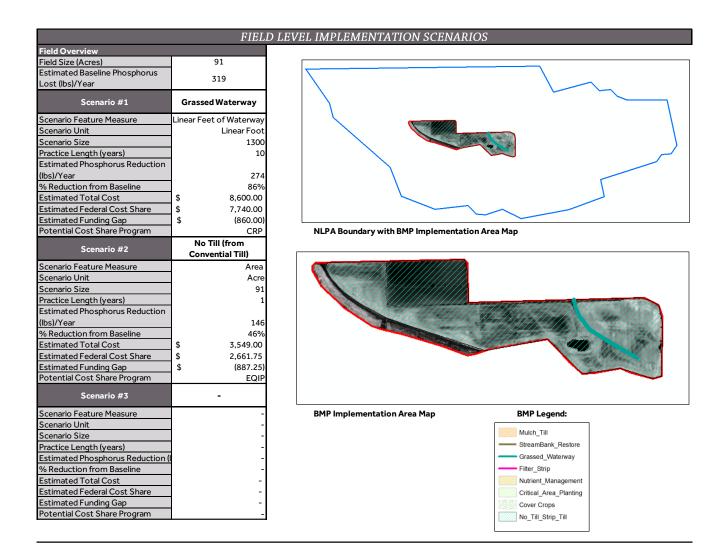
-31%

144%

-1%

-47%

-25%


-5%

-8%

0%

RECOMMENDED BMP'S FOR IMPLEMENTATION IN NLPA									
BMP's	Cover Crops	Critical Area planting	No Till and Strip Till	Fertilizer and Nutrient Management/ Application	Much Till	Filter Strip	Grassed Waterway	Streambank and Shoreline Protection	
Recommendation for Implementation	Yes	Yes	Yes	Yes 32	Yes	Yes	Yes	Yes	

*See appendix for Best Management Practices definitions and descriptions

FIELD LEVEL IMPLEMENTATION NOTES AND ASSUMPTIONS

Field level implementation scenarios were picked base on available data, EVAAL model results, and geographic characteristics visible in orthophotographic maps. BMPs, size, practice length, estimated Phosphorus reduction, and cost estimations were modeled based on data provided by the Green Lake WI "Field Office Technical Guide", and resources mentioned below

Estimated Total Phosphous Loading and Reduction was calculated using the EPA Region 5 model. Reductions may vary depending on field characteristics. Phosphorus Reductions may also vary depending on different models used. Phosphorus Loading Reductions are for example purposes only.

Funding Source that is listed is the most appropriate for the Best Management Practice (BMP) modeled in each scenario. Other funding sources may also be appropriate.

CRP= Conservation Reserve Program.

EQIP= Environmental Quality Incentive Program.

See Appendix B for funding and cost share program details

REFERENCES:

USDA National Agricultural Statistics Service, "CropScape". http://nassgeodata.gmu.edu/CropScape/

USDA Natural Resource Conservation Service. <u>http://www.nrcs.usda.gov/wps/portal/nrcs/site/national/home/</u>

Nutrient Stewardship, "Implementing the 4RS". http://www.nutrientstewardship.com/implement-4rs

NRCS, Green Lake WI "Field Office Technical Guide", https://efotg.sc.egov.usda.gov/toc.aspx?CatID=16711

GREEN LAKE ASSOCIATION

GREEN LAKE NUTRIENT LOAD PRIORITY AREA SNAPSHOT

delta institute

GENERAL DISCRIPTION							
Nutrient Load Priority Area ID	SC001						
Total Acres	437						
Tillable Acres	312						
Non Tillable Acres	125						
Average Slope %	2-6						

TILLABLE LAND USE HISTORY FROM 2012-2014 (Acres)									
Сгор Туре	2012	2013	2014	Average	% Change (2012-2014)	Trend Line			
Corn	174.8	122.8	169.9	155.83	-3%	\langle			
Soybeans	44.5	31.6	13.6	29.90	-69%				
Winter Wheat	-	52.7	35.4	44.05	-				
Oats	-	-	-	-	-				
Alfalfa	6.7	15.3	3.6	8.53	-46%	\sim			
Other Hay/Non Alfalfa	1.1	2.0	5.8	2.97	427%				
Dry Beans	-	0.2	-	0.20	-	\sim			
Peas	-	0.7	-	0.70	-	\sim			
SweetCorn	1.1	0.7	-	0.90	-				
Spring Wheat	-	-	-	-	-				
Christmas Trees	-	-	-	-	-				
Rye	-	-	-	-	-				
Barren	-	0.4	0.4	0.40	-				
Sod/Grass Seed	-	-	-	-	-				
Sugarbeets	-	-	-	-	-				
Herbs	-	-	-	-	-				
Cabbage	-	-	-	-	-				
Barley	-	-	-	-	-				
Grass/Pasture	81.8	66.7	83.4	77.3	2%	\sim			
Dbl Crop WinWht/Corn	-	-	-	-	-				

NON-TILLABLE LAND USE HISTORY FROM 2012-2014 (Acres)									
Land Use Type	2012	2013	2014	Average	% Change	Trend Line			
Fallow/Idle Cropland	-	0.2	-	0.2	-	\langle			
Shrubland	-	0.4	-	0.4	-	\sim			
Deciduous Forest	59.4	57.8	77.8	65.0	31%				
Evergreen Forest	-	-	-	-	-				
Mixed Forest	-	-	0.2	0.2	-				
Woody Wetlands	2	6	3.1	3.7	55%	\sim			
Herbaceous Wetlands	50.9	66.9	28.2	48.7	-45%	\frown			
Open Water	-	-	-	-	-				
Developed/Open Space	9.3	7.1	10.9	9.1	17%	\sim			
Developed/Low Intensity	4.9	4.9	4	4.6	-18%				
Developed/Medium Intensity	0.2	0.2	0.4	0.3	100%				
Developed/High Intensity	-	-	-	-	-				

NLPA Regional Overview

NLPA Section Boundary

NLPA Orthophoto Map

NLPA EVAAL map

Erosion Potential Legend:	
	High
	High-Medium
	Low-Medium
	Low

TOP THREE PROMINENT SOILS IN NLPA AREA				
Soil Name	Primary Soil	Secondary Soil	Tertiary Soils	
	Lomira Silt Loam	Plano Silt Loam	Sebewa Silt Loam	
	calcareous, loamy till. These soils are on ground	sandy outwash or sandy glaciolacustrine deposits on outwash plains, lake plains, and glacial drainageways. Slope ranges from 0 to 3 percent. Mean annual precipitation is about 889 mm (35 inches), and mean annual temperature is about 10.0 degrees C (50 degrees F).	The Sebewa series consists of very deep, poorly drained or very poorly drained soils formed in loamy outwash and the underlying gravelly and sandy outwash on outwash plains, valley trains, and stream terraces on terrace landscapes. They are moderately deep to the gravelly and sandy outwash. Slope ranges from 0 to 3 percent. Mean annual precipitation is about 838 mm (33 inches), and mean annual temperature is about 9.4 degrees C (49 degrees F).	

RECOMMENDED BMP'S FOR IMPLEMENTATION IN NLPA								
BMP's	Cover Crops	Critical Area planting	No Till and Strip Till	Fertilizer and Nutrient Management/ Application	Much Till	Filter Strip	Grassed Waterway	Streambank and Shoreline Protection
Recommendation for Implementation	Yes	Yes	Yes	Yes 34	Yes	Yes	Yes	Yes

*See appendix for Best Management Practices definitions and descriptions

	FIEL.	D LEVEL IMPLEMENTATION SCENARIOS
Field Overview		
Field Size (Acres)	33	
Estimated Baseline Phosphorus		
Lost (lbs)/Year	116	
	Streambank	
Scenario #1	Stabilization	
Scenario Feature Measure	near Feet of stabilization	
Scenario Unit	Linear Foot	
Scenario Size	1100	
Practice Length (years)	10	Sher Creek
Estimated Phosphorus Reduction		
(lbs)/Year	85	
% Reduction from Baseline	73%	
Estimated Total Cost	\$ 20,800.00	
Estimated Federal Cost Share	\$ 15,600.00	
Estimated Funding Gap	\$ (5,200.00)	
Potential Cost Share Program	EQIP	NLPA Boundary with BMP Implementation Area Map
Scenario #2	Critical Area Planting	
Scenario Feature Measure	Area planted	
Scenario Unit	Acre	
Scenario Size	32	
Practice Length (years)	1	The particular and the particula
Estimated Phosphorus Reduction		
(lbs)/Year	57	
% Reduction from Baseline	49%	
Estimated Total Cost	\$ 2,730.00	
Estimated Federal Cost Share	\$ 2,047.50	
Estimated Funding Gap	\$ (682.50)	BMP Legend:
Potential Cost Share Program	EQIP	
Scenario #3	Filter Strip	Mulch_Till StreamBank_Restore
Scenario Feature Measure	Linear Feet of Filter Strip	Grassed_Waterway
Scenario Unit	Linear Foot	
Scenario Size	2200	Nutrient_Management
Practice Length (years)	10	Critical_Area_Planting
Estimated Phosphorus Reduction (110	Cover Crops
% Reduction from Baseline	95%	No_Till_Strip_Till
Estimated Total Cost	\$ 1,100.00	B. B.
Estimated Federal Cost Share	\$ 825.00	
Estimated Funding Gap	\$ (275.00)	
Potential Cost Share Program	EQIP	BMP Implementation Area Map

FIELD LEVEL IMPLEMENTATION NOTES AND ASSUMPTIONS

Field level implementation scenarios were picked base on available data, EVAAL model results, and geographic characteristics visible in orthophotographic maps. BMPs, size, practice length, estimated Phosphorus reduction, and cost estimations were modeled based on data provided by the Green Lake WI "Field Office Technical Guide", and resources mentioned below

Estimated Total Phosphous Loading and Reduction was calculated using the EPA Region 5 model. Reductions may vary depending on field characteristics. Phosphorus Reductions may also vary depending on different models used. Phosphorus Loading Reductions are for example purposes only.

Funding Source that is listed is the most appropriate for the Best Management Practice (BMP) modeled in each scenario. Other funding sources may also be appropriate.

CRP= Conservation Reserve Program.

EQIP= Environmental Quality Incentive Program.

See Appendix B for funding and cost share program details

REFERENCES:

USDA National Agricultural Statistics Service, "CropScape". http://nassgeodata.gmu.edu/CropScape/

USDA Natural Resource Conservation Service. <u>http://www.nrcs.usda.gov/wps/portal/nrcs/site/national/home/</u>

Nutrient Stewardship, "Implementing the 4RS". http://www.nutrientstewardship.com/implement-4rs

NRCS, Green Lake WI "Field Office Technical Guide", https://efotg.sc.egov.usda.gov/toc.aspx?CatID=16711

GREEN LAKE ASSOCIATION

GREEN LAKE NUTRIENT LOAD PRIORITY AREA SNAPSHOT

deltainstitute

GENERAL DISCRIPTION					
Nutrient Load Priority Area ID	SC002				
Total Acres	499				
Tillable Acres	444				
Non Tillable Acres	55				
Average Slope %	2-6				

TILLABLE LAN	ID USE H	ISTORY I	FROM 20	012-2014	l (Acres)	
Сгор Туре	2012	2013	2014	Average	% Change (2012-2014)	Trend Line
Corn	298.2	259.8	318.0	292.00	7%	\sim
Soybeans	44.3	12.2	25.4	27.30	-43%	~
Winter Wheat	0.2	74.1	-	37.15	-	\sim
Oats	-	0.4	-	0.40	-	\sim
Alfalfa	1.6	0.7	2.0	1.43	25%	\sim
Other Hay/Non Alfalfa	0.7	1.6	0.4	0.90	-43%	\sim
Dry Beans	8.9	0.2	0.4	3.17	-96%	<u> </u>
Peas	24.9	1.6	-	13.25	-	<u> </u>
Sweet Corn	3.1	25.6	30.5	19.73	884%	
Spring Wheat	-	-	-	-	-	
Christmas Trees	-	-	-	-	-	
Rye	-	-	-	-	-	
Barren	-	-	-	-	-	
Sod/Grass Seed	-	-	-	-	-	
Sugarbeets	-	-	0.2	0.20	-	
Herbs	-	-	-	-	-	
Cabbage	-	0.4	-	0.40	-	\sim
Barley	-	-	-	-	-	
Grass/Pasture	62.5	67.6	67.2	65.8	8%	
Dbl Crop WinWht/Corn	-	-	-	-	-	

NON-TILLABLE	LAND USE	HISTOR	Y FROM	2012-20	014 (Acres))
Land Use Type	2012	2013	2014	Average	% Change	Trend Line
Fallow/Idle Cropland	-	-	-	-	-	
Shrubland	-	-	0.2	0.2	-	
Deciduous Forest	22.7	18.9	29.1	23.6	28%	~
Evergreen Forest	-	-	-	-	-	
Mixed Forest	-	-	-	-	-	
Woody Wetlands	0.4	3.1	1.3	1.6	225%	\sim
Herbaceous Wetlands	8	10	0.7	6.2	-91%	
Open Water	-	-	-	-	-	
Developed/Open Space	13.3	12.5	14.5	13.4	9%	\sim
Developed/Low Intensity	9.3	9.6	7.6	8.8	-18%	
Developed/Medium Intensity	-	-	-	-	-	
Developed/High Intensity	-	-	-	-	-	

NLPA Regional Overview

NLPA Section Boundary

NLPA Orthophoto Map

NLPA EVAAL map Erosion Potential Legend:

sion Fotential Legenu.					
	High				
	High-Medium				
	Low-Medium				
	Low				

TOP THREE PROMINENT SOILS IN NLPA AREA							
Soil Name	Primary Soil	Secondary Soil	Tertiary Soils				
Son Name	Mendota Silt Loam	Plano Silt Loam	Warsaw Silt Loam				
	calcareous loamy till. These soils are on ground moraines. Slope rangeS from 0 to 12 percent. Mean annual precipitation is about 762 mm (30 inches). Mean annual air temperature is about 7.8 degrees C (46	sandy outwash or sandy glaciolacustrine deposits on outwash plains, lake plains, and glacial drainageways. Slope ranges from 0 to 3 percent. Mean annual precipitation is about 889 mm (35 inches), and mean annual temperature is about 10.0 degrees C (50 degrees F).	The Warsaw series consists of well drained soils formed in loamy sediments and in the underlying gravelly outwash on outwash plains, terraces, kames, and valley trains. These are very deep soils that are deep or very deep to calcareous, stratified gravelly or very gravelly coarse sand and sand. Slope ranges from 0 to 15 percent. Mean annual precipitation is about 1016 mm (40 inches), and mean annual temperature is about 11.1 degrees C (52 degrees F).				

RECOMMENDED BMP'S FOR IMPLEMENTATION IN NLPA								
BMP's	BMP's Cover Crops Critical Area planting No Till and Strip Till Fertilizer and Nutrient Management/ Application Much Till Filter Strip Grassed Waterway Streambank and Shoreline Protection							
Recommendation for Implementation	Yes	Yes	Yes	y3 ₅6	Yes	Yes	Yes	Yes

	FIEL	D LEVEL IMPLEMENTATION SCENARIOS
Field Overview		
Field Size (Acres)	200	BET MERKER REPORTED FOR THE
Estimated Baseline Phosphorus		
Lost (lbs)/Year	700	
Scenario #1	Grassed Waterway	
Scenario Feature Measure	Linear Feet of Waterway	
Scenario Unit	Linear Foot	
Scenario Size	2500	
Practice Length (years)	10	
Estimated Phosphorus Reduction		
(lbs)/Year	308	
% Reduction from Baseline	45%	
Estimated Total Cost	\$ 15,625.00	
Estimated Federal Cost Share	\$ 14,062.50	
Estimated Funding Gap	\$ (1,562.50)	
Potential Cost Share Program	CRP	NLPA Boundary with BMP Implementation Area Map
	Cover Crop- one	
Scenario #2	Species	
Scenario Feature Measure	Area planted	
Scenario Unit	Acre	
Scenario Size	200	the second
Practice Length (years)	1	
Estimated Phosphorus Reduction		
(lbs)/Year	296	
% Reduction from Baseline	42%	
Estimated Total Cost	\$ 12,030.00	
Estimated Federal Cost Share	\$ 9,022.50	
Estimated Funding Gap	\$ (3,007.50)	BMP Legend:
Potential Cost Share Program	EQIP	
		Mulch_Till
Scenario #3	-	
Scenario Feature Measure	-	Grassed_Waterway
Scenario Unit	- 1	Filter Strip
Scenario Size] -	Nutrient_Managem
Practice Length (years)	1 -	Critical Area Plan
Estimated Phosphorus Reduction (-	Cover Crops
% Reduction from Baseline	1 -	No Till Strip Till
Estimated Total Cost	1 -	No_III_strip_III
Estimated Federal Cost Share	-	
Estimated Funding Gap] _	
Potential Cost Share Program	_	BMP Implementation Area Map
		r · · · · · · · · · · · · · · · · · · ·

BMP Implementation Area Map

FIELD LEVEL IMPLEMENTATION NOTES AND ASSUMPTIONS

Field level implementation scenarios were picked base on available data, EVAAL model results, and geographic characteristics visible in orthophotographic maps. BMPs, size, practice length, estimated Phosphorus reduction, and cost estimations were modeled based on data provided by the Green Lake WI "Field Office Technical Guide", and resources mentioned below

Estimated Total Phosphous Loading and Reduction was calculated using the EPA Region 5 model. Reductions may vary depending on field characteristics. Phosphorus Reductions may also vary depending on different models used. Phosphorus Loading Reductions are for example purposes only.

Funding Source that is listed is the most appropriate for the Best Management Practice (BMP) modeled in each scenario. Other funding sources may also be appropriate.

CRP= Conservation Reserve Program.

EQIP= Environmental Quality Incentive Program.

See Appendix B for funding and cost share program details

REFERENCES:

USDA National Agricultural Statistics Service, "CropScape". http://nassgeodata.gmu.edu/CropScape/

USDA Natural Resource Conservation Service. <u>http://www.nrcs.usda.gov/wps/portal/nrcs/site/national/home/</u>

Nutrient Stewardship, "Implementing the 4RS". http://www.nutrientstewardship.com/implement-4rs

NRCS, Green Lake WI "Field Office Technical Guide", https://efotg.sc.egov.usda.gov/toc.aspx?CatID=16711

Non Tillable Acres Average Slope %

GREEN LAKE ASSOCIATION

GREEN LAKE NUTRIENT LOAD PRIORITY AREA SNAPSHOT

deltainstitute

GENERAL DISCRIPTION						
Nutrient Load Priority Area ID	SC003					
Total Acres	641					
Tillable Acres	575					

TILLABLE LAND USE HISTORY FROM 2012-2014 (Acres)						
Crop Type	2012	2013	2014	Average	% Change (2012-2014)	Trend Line
Corn	412.3	326.3	197.9	312.17	-52%	/
Soybeans	77.2	102.3	231.1	136.87	199%	
Winter Wheat	0.7	27.6	41.1	23.13	5771%	
Oats	0.2	0.9	-	0.55	-	\sim
Alfalfa	16.2	4.2	18.7	13.03	15%	\searrow
Other Hay/Non Alfalfa	1.1	18.0	2.7	7.27	145%	\sim
Dry Beans	-	6.7	0.2	3.45	-	\sim
Peas	0.2	2.4	0.2	0.93	0%	\sim
SweetCorn	0.4	1.1	-	0.75	-	\frown
Spring Wheat	-	0.2	-	0.20	-	\sim
Christmas Trees	-	-	-	-	-	
Rye	-	-	-	-	-	
Barren	-	-	-	-	-	
Sod/Grass Seed	-	-	-	-	-	
Sugarbeets	-	0.4	-	0.40	-	\sim
Herbs	-	-	-	-	-	
Cabbage	-	0.7	-	0.70	-	\sim
Barley	-	-	-	-	-	
Grass/Pasture	66.5	73.8	83	74.4	25%	
Dbl Crop WinWht/Corn	-	-	-	-	-	

66

2-6

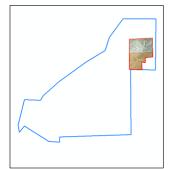
NON-TILLABLE LAND USE HISTORY FROM 2012-2014 (Acres)						
Land Use Type	2012	2013	2014	Average	% Change	Trend Line
Fallow/Idle Cropland	-	0.7	-	0.7	-	\langle
Shrubland	-	-	-	-	-	
Deciduous Forest	13.6	11.8	19.3	14.9	42%	~
Evergreen Forest	-	-	-	-	-	
Mixed Forest	-	-	0.2	0.2	-	
Woody Wetlands	1.3	1.6	1.1	1.3	-15%	\sim
Herbaceous Wetlands	20.7	32.9	13.3	22.3	-36%	\sim
Open Water	-	-	-	-	-	
Developed/Open Space	18.7	17.6	20.5	18.9	10%	
Developed/Low Intensity	11.6	11.6	10.9	11.4	-6%	
Developed/Medium Intensity	-	-	0.4	0.4	-	
Developed/High Intensity	-	-	-	-	-	

NLPA Regional Overview

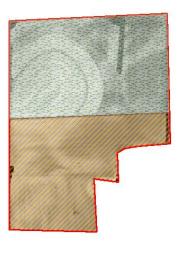
NLPA Section Boundary

NLPA Orthophoto Map

NLPA EVAAL map


Erosion Potential Legend:			
High			
High-Medium			
Low-Medium			
Low			

TOP THREE PROMINENT SOILS IN NLPA AREA							
Soil Name	Primary Soil	Secondary Soil	Tertiary Soils				
Soli Name	Lomira Silt Loam	Mendota Silt Loam	Plano Silt Loam				
	calcareous, loamy till. These soils are on ground moraines. Slope ranges from 0 to 20 percent. Mean annual precipitation is about 762 mm (30 inches). Mean	drainageways. Slope ranges from 0 to 3 percent. Mean annual precipitation is about 889 mm (35 inches), and mean annual temperature is about	The Plano series consists of very deep, well drained soils on outwash plains, stream terraces, or till plains. These soils formed in loess or other silty material and in the underlying loamy stratified outwash or sandy loam till. Slope ranges from 0 to 12 percent. The mean annual air temperature is about 8.9 degrees C (48 degrees F), and the mean annual precipitation is about 914 mm (36 inches).				


RECOMMENDED BMP'S FOR IMPLEMENTATION IN NLPA									
BMP's	Cover Crops	Critical Area planting	No Till and Strip Till	Fertilizer and Nutrient Management/ Application	Much Till	Filter Strip	Grassed Waterway	Streambank and Shoreline Protection	
Recommendation for Implementation	Yes	Yes	Yes	Yes 38	Yes	Yes	Yes	Yes	

	FIEL	D LE
Field Overview		
Field Size (Acres)	45	
Estimated Baseline Phosphorus	1575	
Lost (lbs)/Year	157.5	
Scenario #1	Mulch Till	
Scenario Feature Measure	Area	
Scenario Unit	Acre	
Scenario Size	20	
Practice Length (years)	1	
Estimated Phosphorus Reduction		
(lbs)/Year	37	
% Reduction from Baseline	24%	
Estimated Total Cost	\$ 450.00	
Estimated Federal Cost Share	\$ 337.50 \$ (112.50)	
Estimated Funding Gap	\$ (112.50)	
Potential Cost Share Program	CRP	
Scenario #2	Cover Crop- one Species	
Scenario Feature Measure	Area planted	
Scenario Unit	Acre	
Scenario Size	25	
Practice Length (years)	1	
Estimated Phosphorus Reduction		
(lbs)/Year	46	
% Reduction from Baseline	30%	
Estimated Total Cost	\$ 1,505.00	
Estimated Federal Cost Share	\$ 1,128.75	
Estimated Funding Gap	\$ (376.25)	
Potential Cost Share Program	EQIP	
Scenario #3	-	
Scenario Feature Measure	-	
Scenario Unit	-	
Scenario Size	-	
Practice Length (years)	-	
Estimated Phosphorus Reduction (-	
% Reduction from Baseline	-	
Estimated Total Cost	-	
Estimated Federal Cost Share	-	
Estimated Funding Gap	-	

FIELD LEVEL IMPLEMENTATION SCENARIOS

NLPA Boundary with BMP Implementation Area Map

BMP Implementation Area Map

FIELD LEVEL IMPLEMENTATION NOTES AND ASSUMPTIONS

Field level implementation scenarios were picked base on available data, EVAAL model results, and geographic characteristics visible in orthophotographic maps. BMPs, size, practice length, estimated Phosphorus reduction, and cost estimations were modeled based on data provided by the Green Lake WI "Field Office Technical Guide", and resources mentioned below

Estimated Total Phosphous Loading and Reduction was calculated using the EPA Region 5 model. Reductions may vary depending on field characteristics. Phosphorus Reductions may also vary depending on different models used. Phosphorus Loading Reductions are for example purposes only.

Funding Source that is listed is the most appropriate for the Best Management Practice (BMP) modeled in each scenario. Other funding sources may also be appropriate.

CRP= Conservation Reserve Program.

EQIP= Environmental Quality Incentive Program.

See Appendix B for funding and cost share program details

REFERENCES:

USDA National Agricultural Statistics Service, "CropScape". http://nassgeodata.gmu.edu/CropScape/

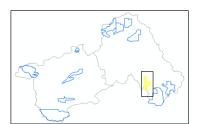
USDA Natural Resource Conservation Service. <u>http://www.nrcs.usda.gov/wps/portal/nrcs/site/national/home/</u>

Nutrient Stewardship, "Implementing the 4RS". http://www.nutrientstewardship.com/implement-4rs

NRCS, Green Lake WI "Field Office Technical Guide", https://efotg.sc.egov.usda.gov/toc.aspx?CatID=16711

GREEN LAKE ASSOCIATION

GREEN LAKE NUTRIENT LOAD PRIORITY AREA SNAPSHOT


delta institute

GENERAL DISCRIPTION ent Load Priority Area ID

Nutrient Load Priority Area ID	5004	
Total Acres	546	
Tillable Acres	516	
Non Tillable Acres	30	
Average Slope %	0-6	

TILLABLE LAND USE HISTORY FROM 2012-2014 (Acres)								
Сгор Туре	2012	2013	2014	Average	% Change (2012-2014)	Trend Line		
Corn	293.1	221.5	294.9	269.83	1%	\langle		
Soybeans	56.9	89.4	82.7	76.33	45%			
Winter Wheat	8.5	34.0	6.9	16.47	-19%	\sim		
Oats	-	0.7	0.2	0.45	-	\sim		
Alfalfa	46.5	19.1	22.2	29.27	-52%	\sim		
Other Hay/Non Alfalfa	1.1	6.4	3.3	3.60	200%	\sim		
Dry Beans	0.7	-	-	0.70	-	<u> </u>		
Peas	0.7	0.4	0.4	0.50	-43%	\sim		
SweetCorn	-	15.6	1.6	8.60	-	\sim		
Spring Wheat	-	-	-	-	-			
Christmas Trees	-	-	-	-	-			
Rye	-	0.2	-	0.20	-	\sim		
Barren	-	0.7	-	0.70	-	\sim		
Sod/Grass Seed	-	-	-	-	-			
Sugarbeets	-	0.2	-	0.20	-	\sim		
Herbs	-	-	-	-	-			
Cabbage	-	-	-	-	-			
Barley	1.3	-	-	1.30	-	\sim		
Grass/Pasture	89.6	87	103.9	93.5	16%			
Dbl Crop WinWht/Corn	-	-	-	-	-			

NON-TILLABLE LAND USE HISTORY FROM 2012-2014 (Acres)								
Land Use Type	2012	2013	2014	Average	% Change	Trend Line		
Fallow/Idle Cropland	0.2	0.4	-	0.3	-	\langle		
Shrubland	-	-	-	-	-			
Deciduous Forest	10.9	5.6	10.7	9.1	-2%	\sim		
Evergreen Forest	-	-	-	-	-			
Mixed Forest	-	-	-	-	-			
Woody Wetlands	0.2	2.2	1.1	1.2	450%	\sim		
Herbaceous Wetlands	29.1	55.6	8	30.9	-73%	\sim		
Open Water	-	-	-	-	-			
Developed/Open Space	6.7	7.1	5.6	6.5	-16%	-		
Developed/Low Intensity	6.9	6.2	6.2	6.4	-10%	\sim		
Developed/Medium Intensity	0.2	0.2	-	0.2	-			
Developed/High Intensity	-	-	-	-	-			

NLPA Regional Overview

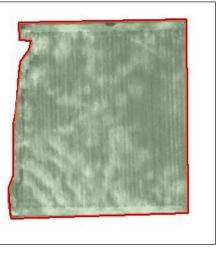
NLPA Section Boundary

NLPA Orthophoto Map

NLPA EVAAL map

Erosion Potential Legend:					
High					
	High-Medium				
	Low-Medium				
	Low				

	TOP THREE PROMINENT SOILS IN NLPA AREA								
Soil Name	Primary Soil	Secondary Soil	Tertiary Soils						
Soli Name	Lomira Silt Loam	Pella Silt Loam	Virgil Silt Loam						
	calcareous, loamy till. These soils are on ground	sandy outwash or sandy glaciolacustrine deposits on outwash plains, lake plains, and glacial drainageways. Slope ranges from 0 to 3 percent. Mean annual precipitation is about 889 mm (35 inches), and mean annual temperature is about	The Virgil series consists of very deep, somewhat poorly drained soils on outwash plains, stream terraces, or till plains. These soils formed in loess or other silty material and in the underlying loamy outwash or sandy loam till. Slope ranges from 0 to 6 percent. Mean annual air temperature is about 8.3 degrees C (47 degrees F). Mean annual precipitation is about 890 mm (35 inches).						


RECOMMENDED BMP'S FOR IMPLEMENTATION IN NLPA									
BMP's	Cover Crops	Critical Area planting	No Till and Strip Till	Fertilizer and Nutrient Management/ Application	Mulch Till	Filter Strip	Grassed Waterway	Streambank and Shoreline Protection	
Recommendation for Implementation	Yes	Yes	Yes	Yes 40	Yes	Yes	No	Yes	

Scenario UnitAcreScenario Size37Practice Length (years)1Estimated Phosphorus Reduction62% Reduction from Baseline51%Estimated Total Cost\$ 7,700.00Estimated Federal Cost Share\$ 5,775.00Estimated Funding Gap\$ (1,925.00)Potential Cost Share Program-Scenario #2-Scenario Feature Measure-Scenario Size-Practice Length (years)-Estimated Foderal Cost Share-Estimated Total Cost-Scenario Unit-Scenario Size-Practice Length (years)-Estimated Foderal Cost Share-Estimated Foderal Cost Share-Scenario Feature Measure-Scenario Unit-Scenario Feature Measure-Scenario Total Cost-Estimated Funding Gap-Potential Cost Share Program-Scenario Joite-Scenario Feature Measure-Scenario Size-Practice Length (years)-Estimated Phosphorus Reduction (i% Reduction from Baseline-Estimated Federal Cost Share-Estimated Federal Cost Share- <t< th=""><th></th><th>FIEL.</th></t<>		FIEL.
Estimated Baseline Phosphorus Lost (lbs)/Year122.5Scenario #1Critical Area PlantingScenario Feature Measure Scenario UnitArea planted AcreeScenario UnitArea planted AcreeScenario Size37Practice Length (years)1Estimated Phosphorus Reduction (lbs)/Year62% Reduction from Baseline\$ 7,700.00Estimated Total Cost\$ 7,700.00Estimated Federal Cost Share\$ 5,775.00Estimated Funding Gap\$ (1,925.00)Potential Cost Share ProgramEQIPScenario #2-Scenario Feature Measure Scenario Unit-Scenario Size-Practice Length (years)-Estimated Phosphorus Reduction (lbs)/Year-% Reduction from Baseline-Estimated Total Cost-Scenario Size-Practice Length (years)-Estimated Funding Gap-Potential Cost Share Program-Scenario Feature Measure Scenario Unit-Scenario Feature Measure Scenario Unit-Scenario Feature Measure Scenario Unit-Scenario Size-Practice Length (years)-Estimated Phosphorus Reduction (i % Reduction from Baseline-Scenario Size-Practice Length (years)-Estimated Phosphorus Reduction (i % Reduction from Baseline-Estimated Phosphorus Reduction (i % Reduction from Baseline-Estimated Photal Cost<	Field Overview	
Lost (lbs)/Year122.5Scenario Feature Measure Scenario SizeCritical Area PlantingScenario GuitArea plantedScenario Size37Practice Length (years)1Estimated Phosphorus Reduction (lbs)/Year62% Reduction from Baseline\$ 7,700.00Estimated Total Cost\$ 7,700.00Estimated Federal Cost Share\$ 7,700.00Scenario #2-Scenario Baseline\$ 7,700.00Estimated Federal Cost Share-Scenario Size-Practice Length (years)-Estimated Total Cost-Estimated Federal Cost Share-Estimated Federal Cost Share-Scenario Juit-Scenario Juit-Scenario Size-Practice Length (years)-Estimated Phosphorus Reduction (i % Reduction from Baseline-Scenario Size-Practice Length (years)-Estimated Phosphorus Reduction (i % Reduction from Baseline-Estimated Phosphorus Reduction (i % Reduction from Baseline-Estimated Federal Cost Share-Estimated Federal Cost Share-Estimated Federal Cost Share- <td>Field Size (Acres)</td> <td>37</td>	Field Size (Acres)	37
Lost (lbs)/YearCritical Area PlantingScenario #1Critical Area PlantingScenario IunitAcreaScenario Size37Practice Length (years)1Estimated Phosphorus Reduction (lbs)/Year5% Reduction from Baseline51%Estimated Total Cost\$Estimated Federal Cost Share\$Scenario #2-Scenario Feature Measure-Scenario Feature Measure-Scenario Feature Measure-Scenario Size-Practice Length (years)-Estimated Foderal Cost Share-Estimated Total Cost-Scenario Size-Practice Length (years)-Estimated Federal Cost Share-Estimated Foderal Cost Share-Scenario Feature Measure-Scenario Unit-Scenario Size-Practice Length (years)-Estimated Foderal Cost Share-Scenario Feature Measure-Scenario Feature Measure-Scenario Feature Measure-Scenario Feature Measure-Scenario Junit-Scenario Size-Practice Length (years)-Estimated Phosphorus Reduction (i% Reduction from Baseline-Estimated Phosphorus Reduction (i% Reduction from Baseline-Estimated Phosphorus Reduction (i% Reduction from Baseline-Estimated Phosphorus Reduction (i <t< td=""><td>Estimated Baseline Phosphorus</td><td>122 5</td></t<>	Estimated Baseline Phosphorus	122 5
Scenario Feature Measure Scenario UnitArea plantedScenario UnitArea plantedScenario Size37Practice Length (years)1Estimated Phosphorus Reduction (lbs)/Year62% Reduction from Baseline51%Estimated Total Cost\$ 7,700.00Estimated Federal Cost Share\$ 5,775.00Estimated Federal Cost Share\$ 5,775.00Estimated Federal Cost Share\$ 2,775.00Potential Cost Share ProgramEQIPScenario #2-Scenario Feature Measure-Scenario Size-Practice Length (years)-Estimated Total Cost-Estimated Total Cost-Estimated Total Cost-Estimated Total Cost-Estimated Federal Cost Share-Scenario Gap-Potential Cost Share Program-Scenario Feature Measure-Scenario Gap-Potential Cost Share Program-Scenario Jize-Practice Length (years)-Estimated Phosphorus Reduction (i-% Reduction from Baseline-Estimated Phosphorus Reduction (i-% Reduction from Baseline-Estimated Phosphorus Reduction (i-% Reduction from Baseline-Estimated Potal Cost-Estimated Federal Cost Share-Estimated Federal Cost Share-Estimated Federal Cost Share-Estimated Federal Cost Share-<	Lost (lbs)/Year	122.5
Scenario UnitAcreScenario Size37Practice Length (years)1Estimated Phosphorus Reduction51%(bs)/Year62% Reduction from Baseline51%Estimated Total Cost\$ 7,700.00Estimated Federal Cost Share\$ 5,775.00Estimated Federal Cost Share\$ 5,775.00Potential Cost Share Program\$ (1,925.00)Potential Cost Share Program-Scenario #2-Scenario Feature Measure-Scenario Size-Practice Length (years)-Estimated Foderal Cost Share-Estimated Total Cost-Estimated Federal Cost Share-Scenario frame-Estimated Foderal Cost Share-Scenario Feature Measure-Scenario Unit-Scenario Feature Measure-Scenario Feature Measure-Scenario Feature Measure-Scenario Feature Measure-Scenario Feature Measure-Scenario Joit-Scenario Size-Practice Length (years)-Estimated Phosphorus Reduction (i% Reduction from Baseline-Estimated Federal Cost Share-Estimated Federal Cost Share <td>Scenario #1</td> <td>Critical Area Planting</td>	Scenario #1	Critical Area Planting
Scenario Size37Practice Length (years)1Estimated Phosphorus Reduction62(lbs)/Year62& Reduction from Baseline51%Estimated Total Cost\$ 7,700.00Estimated Federal Cost Share\$ 5,775.00Estimated Funding Gap\$ (1,925.00)Potential Cost Share ProgramEQIPScenario #2-Scenario Feature Measure-Scenario Size-Practice Length (years)-Estimated Funding Gap-Estimated Total Cost-Scenario Unit-Scenario Size-Potential Cost Share Program-& Reduction from Baseline-Estimated Funding Gap-Potential Cost Share Program-Scenario Gap-Potential Cost Share Program-Scenario Feature Measure-Scenario Junit-Scenario Junit-Scenario Size-Practice Length (years)-Estimated Phosphorus Reduction (i-Scenario Size-Practice Length (years)-Estimated Phosphorus Reduction (i-% Reduction from Baseline-Estimated Phosphorus Reduction (i-% Reduction from Baseline-Estimated Foderal Cost Share-Estimated Foderal Cost Share-Estimated Foderal Cost Share-Estimated Foderal Cost Share-Estimated Foderal Cost Share-	Scenario Feature Measure	Area planted
Practice Length (years) 1 Estimated Phosphorus Reduction 62 % Reduction from Baseline 51% Estimated Total Cost \$ 7,700.00 Estimated Federal Cost Share \$ 5,775.00 Estimated Federal Cost Share \$ 5,775.00 Estimated Federal Cost Share \$ 7,700.00 Estimated Federal Cost Share \$ 5,775.00 Estimated Federal Cost Share \$ 2,775.00 Potential Cost Share Program EQIP Scenario #2 - Scenario Size - Practice Length (years) - Estimated Total Cost - Estimated Federal Cost Share - Scenario Feature Measure - Scenario Gap - Potential Cost Share Program - Scenario Gap - Potential Cost Share Program - Scenario Baseline - Scenario Wat - Scenario Size - Practice Length (years) - Estimated Phosphorus Reduction (- % Reduction from Baseline - Estimated Potal	Scenario Unit	Acre
Estimated Phosphorus Reduction (lbs)/Year62% Reduction from Baseline51%Estimated Total Cost\$ 7,700.00Estimated Funding Gap\$ (1,925.00)Potential Cost Share ProgramEQIPScenario #2-Scenario Feature Measure-Scenario Size-Practice Length (years)-Estimated Ford Total Cost-Estimated Ford Total Cost-Scenario Size-Practice Length (years)-Estimated Ford Total Cost-Estimated Ford Cost Share-Estimated Ford Cost Share-Scenario Unit-Scenario Size-Practice Length (years)-Estimated Phosphorus Reduction (I% Reduction from Baseline-Estimated Phosphorus Reduction (I% Reduction from BaselineEstimated Phosphorus Reduction (I% Reduction from BaselineEstimated Ford Cost ShareEstimated Fo	Scenario Size	37
(Ibs)/Year 62 % Reduction from Baseline 51% Estimated Total Cost \$7,700.00 Estimated Federal Cost Share \$5,775.00 Estimated Funding Gap \$(1,925.00) Potential Cost Share Program EQIP Scenario #2 - Scenario Size - Practice Length (years) - Estimated Funding Gap - Scenario Size - Practice Length (years) - Estimated Foderal Cost Share - Estimated Foderal Cost Share - Estimated Foderal Cost Share - Estimated Founding Gap - Potential Cost Share Program - Scenario Size - Practice Length (years) - Estimated Foderal Cost Share - Estimated Foderal Cost Share - Scenario Size - Practice Length (years) - Scenario Size - Practice Length (years) - Estimated Phosphorus Reduction (I - % Reduction from Baseline - Estimated Phosphorus Reduction (I - % Reduction from Baseline - Estimated Phosphorus Reduction (I -	Practice Length (years)	1
% Reduction from Baseline 51% Estimated Total Cost \$ 7,700.00 Estimated Federal Cost Share \$ 5,775.00 Estimated Funding Gap \$ (1,925.00) Potential Cost Share Program EQIP Scenario #2 - Scenario Feature Measure - Scenario Unit - Scenario Size - Practice Length (years) - Estimated Fordal Cost Share - Estimated Fordal Cost Share - Estimated Funding Gap - Potential Cost Share - Estimated Funding Gap - Scenario Feature Measure - Scenario Feature Measure - Scenario Feature Measure - Scenario Feature Measure - Scenario Size - Practice Length (years) - Estimated Phosphorus Reduction (i - % Reduction from Baseline - Estimated Phosphorus Reduction (i - % Reduction from Baseline - Estimated Phosphorus Reduction (i - % Reduction from Baseline<	Estimated Phosphorus Reduction	
Estimated Total Cost \$ 7,700.00 Estimated Federal Cost Share \$ 5,775.00 Estimated Funding Gap \$ (1,925.00) Potential Cost Share Program EQIP Scenario #2 - Scenario Eature Measure - Scenario Unit - Scenario Size - Practice Length (years) - Estimated Total Cost - Estimated Funding Gap - % Reduction from Baseline - Estimated Funding Gap - Potential Cost Share Program - Scenario Feature Measure - Scenario Size - Practice Length (years) - Estimated Phosphorus Reduction (i - % Reduction from Baseline - Estimated Phosphorus Reduction (i - % Reduction from Baseline - Estimated Phosphorus Reduction (i - % Reduction from Baseline	(lbs)/Year	62
Estimated Federal Cost Share \$ 5,775.00 Estimated Funding Gap \$ (1,925.00) Potential Cost Share Program \$ (1,925.00) Scenario #2 - - Scenario Feature Measure - - Scenario Size - - Practice Length (years) - - Estimated Phosphorus Reduction - - (lbs)/Year - - % Reduction from Baseline - - Estimated Federal Cost Share - - Estimated Federal Cost Share - - Estimated Federal Cost Share - - Scenario #3 - - - Scenario Feature Measure - - - Scenario Size - - - Practice Length (years) - - - Scenario Size - - - Practice Length (years) - - - Estimated Phosphorus Reduction (- - - % Reduction from Baseline - <	% Reduction from Baseline	51%
Estimated Funding Gap \$ (1,925.00) Potential Cost Share Program EQIP Scenario #2 - Scenario Feature Measure - Scenario Unit - Scenario Size - Practice Length (years) - Estimated Phosphorus Reduction - (lbs/Year - % Reduction from Baseline - Estimated Federal Cost Share - Estimated Federal Cost Share - Estimated Federal Cost Share - Scenario #3 - Scenario Feature Measure - Scenario Feature Measure - Scenario Size - Practice Length (years) - Estimated Phosphorus Reduction (I - % Reduction from Baseline - Estimated Phosphorus Reduction (I - % Reduction from Baseline - Estimated Phosphorus Reduction (I - % Reduction from Baseline - Estimated Foderal Cost Share - Estimated Federal Cost Share - Estimated Federal Cost Share <td< td=""><td>Estimated Total Cost</td><td>\$ 7,700.00</td></td<>	Estimated Total Cost	\$ 7,700.00
Estimated Funding Gap \$ (1,925.00) Potential Cost Share Program EQIP Scenario #2 - Scenario Feature Measure - Scenario Unit - Scenario Size - Practice Length (years) - Estimated Phosphorus Reduction - (lbs/Year - % Reduction from Baseline - Estimated Federal Cost Share - Estimated Federal Cost Share - Estimated Federal Cost Share - Scenario #3 - Scenario Feature Measure - Scenario Feature Measure - Scenario Size - Practice Length (years) - Estimated Phosphorus Reduction (I - % Reduction from Baseline - Estimated Phosphorus Reduction (I - % Reduction from Baseline - Estimated Phosphorus Reduction (I - % Reduction from Baseline - Estimated Foderal Cost Share - Estimated Federal Cost Share - Estimated Federal Cost Share <td< td=""><td>Estimated Federal Cost Share</td><td></td></td<>	Estimated Federal Cost Share	
Potential Cost Share Program EQIP Scenario #2 - Scenario Feature Measure - Scenario Vinit - Scenario Size - Practice Length (years) - Estimated Phosphorus Reduction (lbs)/Year - % Reduction from Baseline - Estimated Total Cost - Estimated Federal Cost Share - Estimated Funding Gap - Potential Cost Share Program - Scenario Unit - Scenario Size - Practice Length (years) - Estimated Foderal Cost Share - Scenario Feature Measure - Scenario Size - Practice Length (years) - Estimated Phosphorus Reduction (I - % Reduction from Baseline - Estimated Total Cost - Estimated Total Cost - Estimated Federal Cost Share -	Estimated Funding Gap	
Scenario #2 - Scenario Feature Measure - Scenario Unit - Scenario Size - Practice Length (years) - Estimated Phosphorus Reduction (lbs)/Year - % Reduction from Baseline - Estimated Fotal Cost - Estimated Funding Gap - Potential Cost Share - Estimated Funding Gap - Scenario #3 - Scenario Feature Measure - Scenario Unit - Scenario Size - Practice Length (years) - Estimated Phosphorus Reduction (I - % Reduction from Baseline - Estimated Phosphorus Reduction (I - % Reduction from Baseline - Estimated Potal Cost - Estimated Foderal Cost Share - Estimated Federal Cost Share - Estimated Federal Cost Share - Estimated Funding Gap -		
Scenario Unit - Scenario Size - Practice Length (years) - Estimated Phosphorus Reduction - (lbs)/Year - & Reduction from Baseline - Estimated Total Cost - Estimated Federal Cost Share - Estimated Funding Gap - Potential Cost Share Program - Scenario #3 - Scenario Feature Measure - Scenario Size - Practice Length (years) - Estimated Phosphorus Reduction (I - % Reduction from Baseline - Estimated Total Cost - Estimated Total Cost - Estimated Total Cost - Estimated Total Cost - Estimated Federal Cost Share - Estimated Federal Cost Share - Estimated Funding Gap -		-
Scenario Size - Practice Length (years) - Estimated Phosphorus Reduction - (lbs)/Year - % Reduction from Baseline - Estimated Total Cost - Estimated Federal Cost Share - Estimated Funding Gap - Potential Cost Share Program - Scenario #3 - Scenario Feature Measure - Scenario Size - Practice Length (years) - Estimated Phosphorus Reduction (I - % Reduction from Baseline - Estimated Total Cost - Estimated Foderal Cost Share -	Scenario Feature Measure	-
Practice Length (years) - Estimated Phosphorus Reduction - (lbs)/Year - % Reduction from Baseline - Estimated Total Cost - Estimated Federal Cost Share - Estimated Funding Gap - Potential Cost Share Program - Scenario #3 - Scenario Feature Measure - Scenario Unit - Scenario Size - Practice Length (years) - Estimated Phosphorus Reduction (I - % Reduction from Baseline - Estimated Fotal Cost - Estimated Fotal Cost - Estimated Fotal Cost Share - Estimated Foderal Cost Share - Estimated Federal Cost Share - Estimated Funding Gap -	Scenario Unit	-
Estimated Phosphorus Reduction (lbs)/Year	Scenario Size	-
(Ibs)/Year - % Reduction from Baseline - Estimated Total Cost - Estimated Funding Gap - Potential Cost Share Program - Scenario #3 - Scenario Feature Measure - Scenario Size - Practice Length (years) - Estimated Fotal Cost - Estimated Federal Cost Share -	Practice Length (years)	-
% Reduction from Baseline - Estimated Total Cost - Estimated Federal Cost Share - Estimated Funding Gap - Potential Cost Share Program - Scenario #3 - Scenario Feature Measure - Scenario Size - Practice Length (years) - Estimated Phosphorus Reduction (I - % Reduction from Baseline - Estimated Total Cost - Estimated Federal Cost Share -	Estimated Phosphorus Reduction	
Estimated Total Cost Share Estimated Federal Cost Share Estimated Funding Gap Potential Cost Share Program Scenario #3 Scenario Feature Measure Scenario Unit Scenario Size Practice Length (years) Estimated Phosphorus Reduction (I % Reduction from Baseline Estimated Fotal Cost Estimated Federal Cost Share Estimated Funding Gap	(lbs)/Year	-
Estimated Federal Cost Share Estimated Funding Gap Potential Cost Share Program Scenario #3 Scenario #3 Scenario Duit Scenario Unit Scenario Size Practice Length (years) Estimated Phosphorus Reduction (I % Reduction from Baseline Estimated Fotal Cost Estimated Federal Cost Share Estimated Funding Gap	% Reduction from Baseline	-
Estimated Funding Gap - Potential Cost Share Program - Scenario #3 - Scenario Unit - Scenario Size - Practice Length (years) - Estimated Phosphorus Reduction (I - % Reduction from Baseline - Estimated Total Cost - Estimated Federal Cost Share - Estimated Funding Gap -	Estimated Total Cost	-
Potential Cost Share Program - Scenario #3 - Scenario Feature Measure - Scenario Unit - Scenario Size - Practice Length (years) - Estimated Phosphorus Reduction (I - % Reduction from Baseline - Estimated Total Cost - Estimated Federal Cost Share - Estimated Funding Gap -	Estimated Federal Cost Share	-
Scenario #3 - Scenario Feature Measure - Scenario Unit - Scenario Size - Practice Length (years) - Estimated Phosphorus Reduction (I - % Reduction from Baseline - Estimated Total Cost - Estimated Federal Cost Share - Estimated Funding Gap -	Estimated Funding Gap	-
Scenario Feature Measure - Scenario Unit - Scenario Size - Practice Length (years) - Estimated Phosphorus Reduction (% Reduction from Baseline - Estimated Total Cost - Estimated Federal Cost Share - Estimated Funding Gap -	Potential Cost Share Program	-
Scenario Unit - Scenario Size - Practice Length (years) - Estimated Phosphorus Reduction (i - % Reduction from Baseline - Estimated Total Cost - Estimated Federal Cost Share - Estimated Funding Gap -	Scenario #3	-
Scenario Unit - Scenario Size - Practice Length (years) - Estimated Phosphorus Reduction (i - % Reduction from Baseline - Estimated Total Cost - Estimated Federal Cost Share - Estimated Funding Gap -	Scenario Feature Measure	-
Scenario Size - Practice Length (years) - Estimated Phosphorus Reduction (% Reduction from Baseline - Estimated Total Cost - Estimated Federal Cost Share - Estimated Funding Gap -		-
Estimated Phosphorus Reduction (I - % Reduction from Baseline - Estimated Total Cost - Estimated Federal Cost Share - Estimated Funding Gap -		-
Estimated Phosphorus Reduction (I - % Reduction from Baseline - Estimated Total Cost - Estimated Federal Cost Share - Estimated Funding Gap -	Practice Length (years)	-
% Reduction from Baseline - Estimated Total Cost - Estimated Federal Cost Share - Estimated Funding Gap -		-
Estimated Total Cost - Estimated Federal Cost Share - Estimated Funding Gap -		-
Estimated Federal Cost Share - Estimated Funding Gap -		-
Estimated Funding Gap -		-
		-
	Potential Cost Share Program	-

FIELD LEVEL IMPLEMENTATION SCENARIOS

NLPA Boundary with BMP Implementation Area Map

BMP Implementation Area Map

FIELD LEVEL IMPLEMENTATION NOTES AND ASSUMPTIONS

Field level implementation scenarios were picked base on available data, EVAAL model results, and geographic characteristics visible in orthophotographic maps. BMPs, size, practice length, estimated Phosphorus reduction, and cost estimations were modeled based on data provided by the Green Lake WI "Field Office Technical Guide", and resources mentioned below

Estimated Total Phosphous Loading and Reduction was calculated using the EPA Region 5 model. Reductions may vary depending on field characteristics. Phosphorus Reductions may also vary depending on different models used. Phosphorus Loading Reductions are for example purposes only.

Funding Source that is listed is the most appropriate for the Best Management Practice (BMP) modeled in each scenario. Other funding sources may also be appropriate.

CRP= Conservation Reserve Program.

EQIP= Environmental Quality Incentive Program.

See Appendix B for funding and cost share program details

REFERENCES:

USDA National Agricultural Statistics Service, "CropScape". http://nassgeodata.gmu.edu/CropScape/

USDA Natural Resource Conservation Service. <u>http://www.nrcs.usda.gov/wps/portal/nrcs/site/national/home/</u>

Nutrient Stewardship, "Implementing the 4RS". http://www.nutrientstewardship.com/implement-4rs

NRCS, Green Lake WI "Field Office Technical Guide", https://efotg.sc.egov.usda.gov/toc.aspx?CatID=16711

GREEN LAKE ASSOCIATION

GREEN LAKE NUTRIENT LOAD PRIORITY AREA SNAPSHOT

deltainstitute

UEILAIIIS


GENERAL DISCRIPTION						
Nutrient Load Priority Area ID	SC005					
Total Acres	657					
Tillable Acres	572					
Non Tillable Acres	85					
Average Slope %	0-6					

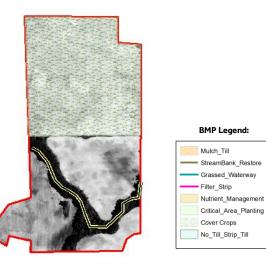
TILLABLE LAND USE HISTORY FROM 2012-2014 (Acres)							
Сгор Туре	2012	2013	2014	Average	% Change (2012-2014)	Trend Line	
Corn	453.9	313.1	320.7	362.57	-29%	/	
Soybeans	50.9	162.8	126.5	113.40	149%		
Winter Wheat	-	0.9	50.5	25.70	-		
Oats	0.9	0.2	0.4	0.50	-56%	~	
Alfalfa	6.9	21.1	22.9	16.97	232%		
Other Hay/Non Alfalfa	14.7	0.9	1.1	5.57	-93%	<u> </u>	
Dry Beans	-	-	-	-	-		
Peas	-	1.6	-	1.60	-	\sim	
SweetCorn	-	21.1	-	21.10	-	\sim	
Spring Wheat	-	-	-	-	-		
Christmas Trees	-	-	-	-	-		
Rye	-	-	-	-	-		
Barren	-	0.2	-	0.20	-	\sim	
Sod/Grass Seed	-	-	-	-	-		
Sugarbeets	-	-	0.2	0.20	-		
Herbs	-	-	-	-	-		
Cabbage	-	-	-	-	-		
Barley	-	-	-	-	-		
Grass/Pasture	32.7	37.8	49.6	40.0	52%		
Dbl Crop WinWht/Corn	-	-	-	-	-		

NON-TILLABLE LAND USE HISTORY FROM 2012-2014 (Acres)								
Land Use Type	2012	2013	2014	Average	% Change	Trend Line		
Fallow/Idle Cropland	-	0.7	-	0.7	-	\langle		
Shrubland	0.2	-	-	0.2	-	<u> </u>		
Deciduous Forest	8.9	2.4	4.7	5.3	-47%	~		
Evergreen Forest	-	-	-	-	-			
Mixed Forest	-	-	-	-	-			
Woody Wetlands	1.1	0.4	2.4	1.3	118%			
Herbaceous Wetlands	59.4	66.5	50.7	58.9	-15%			
Open Water	-	0.2	-	0.2	-	\sim		
Developed/Open Space	19.8	17.1	17.1	18.0	-14%	<u> </u>		
Developed/Low Intensity	7.8	10	10	9.3	28%			
Developed/Medium Intensity	-	-	-	-	-			
Developed/High Intensity	-	-	0.2	0.2	-			

NLPA EVAAL map

Erosion Potential Legend:			
High			
	High-Medium		
	Low-Medium		
	Low		

TOP THREE PROMINENT SOILS IN NLPA AREA								
Soil Name	Primary Soil	Secondary Soil	Tertiary Soils					
Soli Name	Lomira Silt Loam	Pella Silt Loam	Virgil Silt Loam					
Description	calcareous, loamy till. These soils are on ground moraines. Slope ranges from 0 to 20 percent. Mean annual precipitation is about 762 mm (30 inches). Mean annual air temperature is about 8.9 degrees C (48	drained or very poorly drained soils formed in sandy outwash or sandy glaciolacustrine deposits on outwash plains, lake plains, and glacial drainageways. Slope ranges from 0 to 3 percent. Mean annual precipitation is about 889 mm (35 inches), and mean annual temperature is about	The Virgil series consists of very deep, somewhat poorly drained soils on outwash plains, stream terraces, or till plains. These soils formed in loess or other silty material and in the underlying loamy outwash or sandy loam till. Slope ranges from 0 to 6 percent. Mean annual air temperature is about 8.3 degrees C (47 degrees F). Mean annual precipitation is about 890 mm (35 inches).					


RECOMMENDED BMP'S FOR IMPLEMENTATION IN NLPA								
BMP's Cover Crops Critical Area planting No Till and Strip Till Fertilizer and Nutrient Management/ Application Much Till Filter Strip Grassed Waterway Streambank and Shoreline Protection								
Recommendation for Implementation	Yes	Yes	Yes	Yes 12	Yes	Yes	No	Yes

	FIEL
Field Overview	
Field Size (Acres)	33
Estimated Baseline Phosphorus	115 5
Lost (lbs)/Year	115.5
Scenario #1	Streambank Stabilization
Scenario Feature Measure	near Feet of stabilization
Scenario Unit	Linear Foot
Scenario Size	2100
Practice Length (years)	10
Estimated Phosphorus Reduction	
(lbs)/Year	90
% Reduction from Baseline	78%
Estimated Total Cost	\$ 31,000.00
Estimated Federal Cost Share	\$ 23,250.00
Estimated Funding Gap	\$ (7,750.00)
Potential Cost Share Program	CRP
Scenario #2	Cover Crop- one Species
Scenario Feature Measure	Area planted
Scenario Unit	Acre
Scenario Size	30
Practice Length (years)	1
Estimated Phosphorus Reduction	
(lbs)/Year	54
% Reduction from Baseline	47%
Estimated Total Cost	\$ 1,805.00
Estimated Federal Cost Share	\$ 1,353.75
Estimated Funding Gap	\$ (451.25)
Potential Cost Share Program	EQIP
Scenario #3	-
Constant Frankright Managemen	
Scenario Feature Measure	
Scenario Feature Measure	-
	-
Scenario Unit Scenario Size	
Scenario Unit Scenario Size Practice Length (years)	
Scenario Unit Scenario Size	
Scenario Unit Scenario Size Practice Length (years) Estimated Phosphorus Reduction (
Scenario Unit Scenario Size Practice Length (years) Estimated Phosphorus Reduction (% Reduction from Baseline	
Scenario Unit Scenario Size Practice Length (years) Estimated Phosphorus Reduction (& Reduction from Baseline Estimated Total Cost	

TELD LEVEL IMPLEMENTATION SCENARIOS

NLPA Boundary with BMP Implementation Area Map

BMP Implementation Area Map

FIELD LEVEL IMPLEMENTATION NOTES AND ASSUMPTIONS

Field level implementation scenarios were picked base on available data, EVAAL model results, and geographic characteristics visible in orthophotographic maps. BMPs, size, practice length, estimated Phosphorus reduction, and cost estimations were modeled based on data provided by the Green Lake WI "Field Office Technical Guide", and resources mentioned below

Estimated Total Phosphous Loading and Reduction was calculated using the EPA Region 5 model. Reductions may vary depending on field characteristics. Phosphorus Reductions may also vary depending on different models used. Phosphorus Loading Reductions are for example purposes only.

Funding Source that is listed is the most appropriate for the Best Management Practice (BMP) modeled in each scenario. Other funding sources may also be appropriate.

CRP= Conservation Reserve Program.

EQIP= Environmental Quality Incentive Program.

See Appendix B for funding and cost share program details

REFERENCES:

USDA National Agricultural Statistics Service, "CropScape". http://nassgeodata.gmu.edu/CropScape/

USDA Natural Resource Conservation Service. <u>http://www.nrcs.usda.gov/wps/portal/nrcs/site/national/home/</u>

Nutrient Stewardship, "Implementing the 4RS". http://www.nutrientstewardship.com/implement-4rs

NRCS, Green Lake WI "Field Office Technical Guide", <u>https://efotg.sc.egov.usda.gov/toc.aspx?CatID=16711</u>

GREEN LAKE ASSOCIATION

GREEN LAKE NUTRIENT LOAD PRIORITY AREA SNAPSHOT

deltainstitute

GENERAL DISCRIPTION					
Nutrient Load Priority Area ID	SC006				
Total Acres	1292				
Tillable Acres	1158				
Non Tillable Acres	134				
Average Slope %	2-6				

TILLABLE LAN	ID USE H	ISTORY I	FROM 20	12-2014	l (Acres)	
Сгор Туре	2012	2013	2014	Average	% Change (2012-2014)	Trend Line
Corn	780.6	631.2	403.2	605.00	-48%	/
Soybeans	190.4	115.6	281.6	195.87	48%	\sim
Winter Wheat	20.5	66.3	201.9	96.23	885%	
Oats	1.6	2.4	2.9	2.30	81%	
Alfalfa	5.1	8.7	13.1	8.97	157%	
Other Hay/Non Alfalfa	1.3	2.4	8.2	3.97	531%	
Dry Beans	18.2	6.4	0.4	8.33	-98%	
Peas	33.6	145.9	106.1	95.20	216%	
SweetCorn	-	55.2	42.5	48.85	-	
Spring Wheat	-	-	-	-	-	
Christmas Trees	-	-	-	-	-	
Rye	-	-	-	-	-	
Barren	-	-	-	-	-	
Sod/Grass Seed	-	-	-	-	-	
Sugarbeets	-	1.3	2.2	1.75	-	
Herbs	-	-	-	-	-	
Cabbage	-	-	-	-	-	
Barley	-	-	-	-	-	
Grass/Pasture	75.6	93.6	96.3	88.5	27%	
Dbl Crop WinWht/Corn	-	0.4	-	0.40	-	\sim

NON-TILLABLE LAND USE HISTORY FROM 2012-2014 (Acres)							
Land Use Type	2012	2013	2014	Average	% Change	Trend Line	
Fallow/Idle Cropland	-	2	-	2.0	-		
Shrubland	-	-	-	-	-		
Deciduous Forest	14.9	5.6	9.3	9.9	-38%	~	
Evergreen Forest	-	-	-	-	-		
Mixed Forest	-	-	-	-	-		
Woody Wetlands	1.3	2	1.6	1.6	23%	\sim	
Herbaceous Wetlands	85.4	95	66.7	82.4	-22%		
Open Water	0.2	-	-	0.2	-	<u> </u>	
Developed/Open Space	41.8	32.9	31.6	35.4	-24%	<u> </u>	
Developed/Low Intensity	20	23.1	22.7	21.9	14%		
Developed/Medium Intensity	-	0.2	0.9	0.6	-	-	
Developed/High Intensity	-	0.2	-	0.2	-	\sim	

NLPA Regional Overview

NLPA Section Boundary

NLPA Orthophoto Map

NLPA EVAAL map

Erosion Potential Legend:		
	High	
	High-Medium	
	Low-Medium	
	Low	

TOP THREE PROMINENT SOILS IN NLPA AREA								
Soil Name	Primary Soil	Secondary Soil	Tertiary Soils					
Son Name	Lomira Silt Loam	St. Charles Silt Loam	Pella Silt Loam					
Description	calcareous, loamy till. These soils are on ground moraines. Slope ranges from 0 to 20 percent. Mean annual precipitation is about 762 mm (30 inches). Mean annual air temperature is about 8.9 degrees C (48 degrees F)	are moderately deep to the gravelly and sandy	The Pella series consists of very deep, poorly drained soils formed in loamy or silty sediments and the underlying stratified loamy glacial sediments on lake plains, outwash plains, and till plains. Slope ranges from 0 to 3 percent. Mean annual precipitation is about 914 mm (36 inches), and mean annual air temperature is about 10 degrees C (50 degrees F).					

RECOMMENDED BMP'S FOR IMPLEMENTATION IN NLPA								
BMP's Cover Crops Critical Area planting No Till and Strip Till Fertilizer and Nutrient Management/ Application Mulch Till Filter Strip Grassed Waterway Streambank and Shoreline Protection								
Recommendation for Implementation	Yes							

	FIELD .	LEVEL IMPLEMENTATION SCENARIOS
Field Overview		
Field Size (Acres)	85	
Estimated Baseline Phosphorus	297.5	
Lost (lbs)/Year	297.5	
Scenario #1	No Till	
Scenario Feature Measure	Area	
Scenario Unit	Acre	
Scenario Size	85	
Practice Length (years)	1	
Estimated Phosphorus Reduction		
(lbs)/Year	137	
% Reduction from Baseline	46%	
	\$ 3,315.00	
	\$ 2,486.25	
Estimated Funding Gap	\$ (828.75)	
Potential Cost Share Program	EQIP	NLPA Boundary with BMP Implementation Area Map
Scenario #2	-	
Scenario Feature Measure	-	and the second
Scenario Unit	-	
Scenario Size	-	
Practice Length (years)	-	
Estimated Phosphorus Reduction		
(lbs)/Year	-	
% Reduction from Baseline	-	
Estimated Total Cost	-	
Estimated Federal Cost Share	-	
Estimated Funding Gap	-	BMP Legend:
Potential Cost Share Program	-	
Scenario #3		Mulch_Till
Scenario #5	-	StreamBank_Restore
Scenario Feature Measure	-	Grassed_Waterway
Scenario Unit	-	Filter_Strip
Scenario Size	-	Nutrient_Management
Practice Length (years)	-	Critical_Area_Planting
Estimated Phosphorus Reduction (I	-	Cover Crops
% Reduction from Baseline	-	No_Till_Strip_Till
Estimated Total Cost	-	
Estimated Federal Cost Share	-	Activities and a second s
Estimated Funding Gap	-	

BMP Implementation Area Map

FIELD LEVEL IMPLEMENTATION NOTES AND ASSUMPTIONS

Field level implementation scenarios were picked base on available data, EVAAL model results, and geographic characteristics visible in orthophotographic maps. BMPs, size, practice length, estimated Phosphorus reduction, and cost estimations were modeled based on data provided by the Green Lake WI "Field Office Technical Guide", and resources mentioned below

Estimated Total Phosphous Loading and Reduction was calculated using the EPA Region 5 model. Reductions may vary depending on field characteristics. Phosphorus Reductions may also vary depending on different models used. Phosphorus Loading Reductions are for example purposes only.

Funding Source that is listed is the most appropriate for the Best Management Practice (BMP) modeled in each scenario. Other funding sources may also be appropriate.

CRP= Conservation Reserve Program.

Potential Cost Share Program

EQIP= Environmental Quality Incentive Program.

See Appendix B for funding and cost share program details

REFERENCES:

USDA National Agricultural Statistics Service, "CropScape". http://nassgeodata.gmu.edu/CropScape/

USDA Natural Resource Conservation Service. <u>http://www.nrcs.usda.gov/wps/portal/nrcs/site/national/home/</u>

Nutrient Stewardship, "Implementing the 4RS". http://www.nutrientstewardship.com/implement-4rs

NRCS, Green Lake WI "Field Office Technical Guide", <u>https://efotg.sc.egov.usda.gov/toc.aspx?CatID=16711</u>

GREEN LAKE ASSOCIATION

GREEN LAKE NUTRIENT LOAD PRIORITY AREA SNAPSHOT

delta institute

GENERAL DISCRIPTION				
Nutrient Load Priority Area ID	SC007			
Total Acres	781			
Tillable Acres	655			
Non Tillable Acres	126			
Average Slope %	2-6			

TILLABLE LAN	D USE H	ISTORY I	FROM 20	012-2014	l (Acres)	
Сгор Туре	2012	2013	2014	Average	% Change (2012-2014)	Trend Line
Corn	402.5	462.1	230.8	365.13	-43%)
Soybeans	114.5	25.8	282.7	141.00	147%	\sim
Winter Wheat	0.2	25.6	-	12.90	-	\sim
Oats	-	0.2	-	0.20	-	\sim
Alfalfa	11.6	7.6	9.8	9.67	-16%	\sim
Other Hay/Non Alfalfa	2.0	8.9	3.6	4.83	80%	\sim
Dry Beans	-	0.2	0.2	0.20	-	
Peas	-	1.6	-	1.60	-	\sim
SweetCorn	0.2	0.9	-	0.55	-	\sim
Spring Wheat	-	0.2	-	0.20	-	\sim
Christmas Trees	0.4	-	-	0.40	-	<u> </u>
Rye	-	-	-	-	-	
Barren	-	-	-	-	-	
Sod/Grass Seed	-	-	-	-	-	
Sugarbeets	-	-	-	-	-	
Herbs	-	-	-	-	-	
Cabbage	-	-	-	-	-	
Barley	-	-	-	-	-	
Grass/Pasture	105.2	111.2	127.7	114.7	21%	
Dbl Crop WinWht/Corn	-	-	-	-	-	

NON-TILLABLE L	AND USE	HISTOR	Y FROM	2012-20	014 (Acres,)
Land Use Type	2012	2013	2014	Average	% Change	Trend Line
Fallow/Idle Cropland	-	-	-	-	-	
Shrubland	-	-	-	-	-	
Deciduous Forest	56.7	56	67.2	60.0	19%	
Evergreen Forest	-	-	-	-	-	
Mixed Forest	-	-	0.2	0.2	-	
Woody Wetlands	2	6.7	1.6	3.4	-20%	\sim
Herbaceous Wetlands	55.2	44.5	26.7	42.1	-52%	
Open Water	-	-	-	-	-	
Developed/Open Space	23.8	20.9	22	22.2	-8%	~
Developed/Low Intensity	8.7	10.7	7.8	9.1	-10%	\sim
Developed/Medium Intensity	-	-	-	-	-	
Developed/High Intensity	-	-	-	-	-	

NLPA Regional Overview

NLPA Section Boundary

NLPA Orthophoto Map

NLPA EVAAL map

Erosion Potential Legend:			
High			
	High-Medium		
	Low-Medium		
	Low		

	TOP THREE PROMINENT SOILS IN NLPA AREA							
Soil Name	Primary Soil	Secondary Soil	Tertiary Soils					
Soli Name	Lomira Silt Loam	St. Charles Silt Loam	Pella Silt Loam					
Description	calcareous, loamy till. These soils are on ground moraines. Slope ranges from 0 to 20 percent. Mean annual precipitation is about 762 mm (30 inches). Mean annual air temperature is about 8.9 degrees C (48 degrees F)	loamy outwash and the underlying gravelly and sandy outwash on outwash plains, valley trains, and stream terraces on terrace landscapes. They are moderately deep to the gravelly and sandy	The Pella series consists of very deep, poorly drained soils formed in loamy or silty sediments and the underlying stratified loamy glacial sediments on lake plains, outwash plains, and till plains. Slope ranges from 0 to 3 percent. Mean annual precipitation is about 914 mm (36 inches), and mean annual air temperature is about 10 degrees C (50 degrees F).					

RECOMMENDED BMP'S FOR IMPLEMENTATION IN NLPA								
BMP's	Cover Crops	Critical Area planting	No Till and Strip Till	Fertilizer and Nutrient Management/ Application	Mulch Till	Filter Strip	Grassed Waterway	Streambank and Shoreline Protection
Recommendation for Implementation	Yes	No	Yes	Yes 46	Yes	No	Yes	No

	FIEL
Field Overview	
Field Size (Acres)	19
Estimated Baseline Phosphorus	66 F
Lost (lbs)/Year	66.5
Scenario #1	Mulch Till
Scenario Feature Measure	Area
Scenario Unit	Acre
Scenario Size	8
Practice Length (years)	1
Estimated Phosphorus Reduction	
(lbs)/Year	16
% Reduction from Baseline	25%
Estimated Total Cost	\$ 180.00
Estimated Federal Cost Share	\$ 135.00
Estimated Funding Gap	\$ (45.00)
Potential Cost Share Program	EQIP
Scenario #2	No Till
Scenario Feature Measure	Area
Scenario Unit	Acre
Scenario Size	11
Practice Length (years)	1
Estimated Phosphorus Reduction	
(lbs)/Year	22
% Reduction from Baseline	3300%
Estimated Total Cost	\$ 429.00
Estimated Federal Cost Share	\$ 321.75
Estimated Funding Gap	\$ (107.25)
Potential Cost Share Program	EQIP
Scenario #3	-
Scenario Feature Measure	-
Scenario Unit	-
Scenario Size	-
Practice Length (years)	-
Estimated Phosphorus Reduction (-
% Reduction from Baseline	-
Estimated Total Cost	-
Estimated Federal Cost Share	-
Estimated Funding Gap	-
Potential Cost Share Program	-

FIELD LEVEL IMPLEMENTATION SCENARIOS

NLPA Boundary with BMP Implementation Area Map

BMP Implementation Area Map

FIELD LEVEL IMPLEMENTATION NOTES AND ASSUMPTIONS

Field level implementation scenarios were picked base on available data, EVAAL model results, and geographic characteristics visible in orthophotographic maps. BMPs, size, practice length, estimated Phosphorus reduction, and cost estimations were modeled based on data provided by the Green Lake WI "Field Office Technical Guide", and resources mentioned below

Estimated Total Phosphous Loading and Reduction was calculated using the EPA Region 5 model. Reductions may vary depending on field characteristics. Phosphorus Reductions may also vary depending on different models used. Phosphorus Loading Reductions are for example purposes only.

Funding Source that is listed is the most appropriate for the Best Management Practice (BMP) modeled in each scenario. Other funding sources may also be appropriate.

CRP= Conservation Reserve Program.

EQIP= Environmental Quality Incentive Program.

See Appendix B for funding and cost share program details

REFERENCES:

USDA National Agricultural Statistics Service, "CropScape". http://nassgeodata.gmu.edu/CropScape/

USDA Natural Resource Conservation Service. <u>http://www.nrcs.usda.gov/wps/portal/nrcs/site/national/home/</u>

Nutrient Stewardship, "Implementing the 4RS". http://www.nutrientstewardship.com/implement-4rs

NRCS, Green Lake WI "Field Office Technical Guide", <u>https://efotg.sc.egov.usda.gov/toc.aspx?CatID=16711</u>

APPENDIX E: Conservation Best Practices

PRACTICE: COVER CROPS

Definition: Cover Crops are grasses, small grains, legumes, forbs, and/or other herbaceous plants established for seasonal cover and conservation purposes.

Planning: Plans and specifications should be prepared for each site according to planning criteria. Plans for the establishment of Cover Crops shall include:

Parameters:	Establishment Guidelines:
Field Location and Acres	Map all locations with exact acres to be planted
Species of Plants to be established	Multiple species exist for multiple benefits. See table 2 for more details.
Seeding Rates (Drilled)	Example ranges between 1-65 lbs/acre. Please see table 1 for more details.
Seeding Dates	Example ranges from April 1 st to September 15 th . Please see table 1 for more details.
Establishment Procedure	Broadcast, Drill or Aerial Application
Crop Termination	Ranges from Winter kill, plowing or prescribed burns

Implementation and verification:

- Time the cover crop establishment to maximize competition with weeds and volunteer plants. This will depend on your primary crop and harvest window.
- Termination will vary depending on the species of the cover crop. Termination should be planned to prevent a negative impact on the next crop in the crop rotation.
- Evaluate the cover crop to determine if it is meeting the planned purposes. If the cover crop is not meeting the intended purpose, adjust the current management, change the species of future cover crops, or choose a different establishment and termination method. Verification should take place once the cover crop is established and several different time throughout the life of the cover crop.

Potent	Potential Benefits					
Soil Erosion	4					
Soil Quality	4					
Water Quality	4					
Air Quality	2					
Fish and Wildlife	3					

1= Poor, 2= Fair, 3= Good, 4= Very Good, 5= Excellent

Reference: USDA-NRCS- For more information, visit <u>https://efotg.sc.egov.usda.gov/</u>

Table 1

Species	Seeding Rate Drill/Broadcast	Seeding Date (statewide)	Planting Depth (inches)
COCKTAIL MIXTURES			
Forage/Oilseed Radish (50%)	4-12 lbs./ac	8/1 0/1	% to 1
Peas, Winter (50%)	65-100 lbs./ac	8/1-9/1	74 10 1
Cereal Rye, Winter (50%)	60-120 lbs./ac	7/15 0/15	1/ 10 11/
Hairy Vetch (50%)	15-20 lbs./ac	7/15-9/15	½ to 1½
Annual Ryegrass (60%)	15-20 lbs./ac		N to N
Oilseed Radish (40%)	4-12 lbs./ac	4/10-6/1, 8/1-9/1	¼ to ½
Berseem Clover (50%)	9-17 lbs./ac	6/4.0/4	44 - N
Oats (50%)	30-60 lbs./ac	6/1-8/1	½ to ¾
Oats (60%)	30-60 lbs./ac		14 h = 24
Oilseed Radish (40%)	4-12 lbs./ac	4/10-6/15, 7/15-9/1	½ to ¾
Oats (60%)	30-60 lbs./ac	ch che she oh	
Peas, Winter (40%)	65-100 lbs./ac	6/1-6/15, 7/15-9/1	¼ to ½
Oilseed Radish (40%)	4-12 lbs./ac	0/1 0/1	24 - 4
Hairy Vetch (60%)	15-20 lbs./ac	8/1-9/1	¾ to 1
Oats (60%)	30-60 lbs./ac		
Oilseed Radish (40%)	4-12 lbs./ac	4/10-6/15, 7/15-9/1	¾ to 1
Field Pea (20%)	65-100 lbs./ac		
Oats (60%)	30-60 lbs./ac		
Annual Ryegrass (20%)	15-20 lbs./ac	5/1-6/15, 7/15-9/1	½ to 1
Crimson Clover (20%)	11-17 lbs./ac		
Field Pea (20%)	65-100 lbs./ac		
Oats (30%)	30-60 lbs./ac		
Pearl Millet (20%)	22-28 lbs./ac	5/1-6/15, 7/15-9/1	½ to 1
Forage Turnips (15%)	1-5 lbs./ac		
Crimson Clover (15%)	11-17 lbs./ac		
Field Pea (30%)	65-100 lbs./ac		
Rapeseed/Canola (5%)	1-5 lbs./ac		
Crimson Clover (20%)	11-17 lbs./ac	5/1-6/15, 7/15-9/1	½ to 1
Oats (40%)	30-60 lbs./ac		
Sunflower (5%)	1-2 lbs./ac		

Reference: USDA-NRCS Wisconsin Agronomy Technical Note 7

Species	Use ¹	N-Source	SoilBuilder	Erosion Fighter	Weed Fighter	Pest Fighter	N-Scavenger	Grazing	Quick Growth	Non-Fragile Residue	Pollinator	Deep Rooted
Alfalfa (Medicago sativa) 3	С	4	3	3	3	1	2	3	3	1	3	4
Annual Ryegrass (Lolium multiflorum)	С	0	3	3	2	2	3	4	4	2	0	2
Barley, Spring (Hordeum vulgare)	С	0	3	3	3	1	3	3	3	4	0	2
Berseem Clover (Trifolium alexandrinum) 3	С	4	2	2	2	1	1	4	2	1	3	1
Buckwheat (Fagopyrum esculentum)	С	0	2	3	3	1	3	1	4	0	4	4
Canola/Rapeseed (Brassica napus)	С	0	2	3	2	1	3	4	4	1	3	3
Cereal Rye, Winter (Secale cereale)	С	0	4	4	4	3	4	4	4	4	0	3
Chicory (Cichorium intybus)	Е	0	2	2	2	0	2	3	2	1	2	3
Cowpea (Vigna unguiculata)	С	3	2	2	2	0	2	3	3	1	2	1
Crimson Clover (Trifolium incarnatum)	E	3	2	3	2	1	2	4	3	1	4	2
Field Pea (Pisum satuvum)	С	2	2	2	1	1	1	2	3	1	2	2
Forage Turnips (Brassica rapa)	С	0	1	3	2	0	3	4	3	1	1	1
Forage/Oilseed Radish (Raphanus sativus)	Е	0	2	3	2	1	4	3	3	1	3	3
Hairy Vetch (Vicia villosa)	С	4	2	2	3	2	1	0	2	1	2	4
Japanese Millet (Echinochloa frumentacea)	С	0	3	3	3	3	3	3	4	4	1	3
Oats (Avena sativa)	С	0	3	3	3	2	3	4	4	2	0	2
Peas, Winter (Pisum sativum subsp. arvense)	С	2	2	2	1	1	1	2	3	1	2	2
Pearl Millet (Pennisetum glaucum)	С	0	3	3	4	2	3	4	4	4	1	2
Red Clover (Trifolium pratense)3	С	4	3	3	3	1	2	4	3	2	4	3
Sorghum-Sundangrass (Sorghum bicolor x S. bicolor var. Sudanese)	С	0	4	4	4	2	4	4	4	4	2	3
Sunangrass (Sorghum biclor)	С	0	4	3	4	3	4	4	4	4	2	3
Sunflower (Helianthus annuus)	E	0	2	2	2	1	3	1	3	3	3	4
Triticale, Winter (Triticum x Secale)	С	0	3	3	3	2	3	4	3	4	0	2
Wheat, Spring/Winter (Triticum aestivum)	С	0	3	3	3	2	3	4	3	4	0	2
White Clover (Trifolium repens) ³	С	2	2	1	1	2	3	3	3	3	2	0

Table 2

¹ Use: C=Common Use – Considerable state knowledge regarding species use. E=Emerging Use – Limited state knowledge regarding species use.

² Attribute Ratings: 0=Poor, 1=Fair, 2=Good, 3=Very Good, 4=Excellent

³ Legumes such as alfalfa and red clover may cause bloating of ruminant animals. Take necessary precautions to prevent bloat when grazing cover crops that contain these legumes.

Reference: USDA-NRCS Wisconsin Agronomy Technical Note 7

PRACTICE: CRITICAL AREA PLANTING

Definition: Critical Area Planting is the establishment of permanent vegetation on sites that have or are expected to have high erosion rates, and on sites that have physical, chemical, or biological conditions that prevent the establishment of vegetation with normal practices.

Planning: Plans and specifications should be prepared for each site according to planning criteria. Plans for the establishment of Critical Area Planting shall include:

Parameters:	Establishment Guidelines:
Field Location and Acres	Map all locations with exact acres to be planted
Species of Plants to be established	Cool or Warm Season Grasses
Seeding Rates (Drilled)	Varies depending on type of grass planted
Seeding Dates	Ranges from April 15 th to November 1st
Establishment Procedure	Drill

Implementation and verification:

- Sites may require ongoing periodic maintenance consisting of mowing, burning, or herbicide treatment.
- Minimize activities which disturb wildlife during the primary nesting season May 15 through August 1.
- Consider planting native vegetation and/or local genotypes when restoring riparian corridors to its pre-settlement conditions.
- Sites should be inspected periodically to ensure site stabilization objectives are being met.

Potentia	Potential Benefits					
Soil Erosion	4					
Soil Quality	3					
Water Quality	4					
Air Quality	2					
Fish and Wildlife	4					

1= Poor, 2= Fair, 3= Good, 4= Very Good, 5= Excellent

Reference: USDA-NRCS

For more information, visit https://efotg.sc.egov.usda.gov/

PRACTICE: FILTER STRIP

Definition: A strip or area of herbaceous vegetation that removes contaminates from overland flow. Filter strips differ from grassed waterways in that filter strips usually are adjacent to stream or creek banks and they do not have parabolic shapes as grassed waterways.

Planning: Plans and specifications should be prepared for each site according to planning criteria. Plans for the establishment of filter strips shall include:

Parameters:	Establishment Guidelines:
Field Location and Acres	Map all locations with exact acres of filter strip
Layout, Design	Properly lay out stakes and flags for construction.
	Design: such as length and width
Seed Species	Perennial herbaceous
Seeding Rates (Drilled)	Varies depending on type of grass planted
Seeding Dates	Ranges from April 15 th to November 1st
Establishment Procedure	Drill

Implementation and verification:

- Control weeds during first year of establishment. Mow weeds as often as needed to avoid weeds from flowering. Remove clippings to avoid smothering the cover.
- Control the establishment and spread of noxious weeds and other invasive species.
- Re-grade the filter strip area when sediment deposition jeopardizes its function.
- Filter strip should be inspected periodically to ensure site stabilization objectives are being met.

Potential Benefits	
Soil Erosion	1
Soil Quality	5
Water Quality	4
Air Quality	2
Fish and Wildlife	3

1= Poor, 2= Fair, 3= Good, 4= Very Good, 5= Excellent

Reference: USDA-NRCS, For more information, visit <u>https://efotg.sc.egov.usda.gov/</u>

PRACTICE: GRASSED WATERWAY

Definition: A grassed waterway is a shaped or graded channel that is established with suitable vegetation to convey surface water at a non-erosive velocity using a broad and shallow cross section to a stable outlet.

Planning: Plans and specifications should be prepared for each site according to planning criteria. Plans for the establishment of a grassed waterway shall include:

Parameters:	Establishment Guidelines:
Field Location and Acres	Map all locations with exact acres of grassed
	waterway
Layout, Survey and Design	Properly lay out stakes, flags and survey for
	construction. Design Waterway per NRCS
	Standards and Specifications.
Seed Species	Turf Type Fescue and a type of fast growing cover
Seeding Rates (Drilled)	Varies depending on type of grass planted
Seeding Dates	Ranges from April 15 th to November 1st
Establishment Procedure	Drill

Implementation and verification:

- Construct waterway per NRCS Standards and Specifications and verify seeding and other erosion control measures are installed.
- Grassed waterway should be mowed once per year, after August 1st, to not disturb bird nesting season.
- Once grassed waterway is constructed, re-survey to make sure it was constructed per design.
- Grassed waterway should be inspected periodically to ensure site stabilization objectives are being met.

Potential Benefits	
Soil Erosion	5
Soil Quality	2
Water Quality	3
Air Quality	1
Fish and Wildlife	3

1= Poor, 2= Fair, 3= Good, 4= Very Good, 5= Excellent

Reference: USDA-NRCS, For more information, visit <u>https://efotg.sc.egov.usda.gov/</u>

PRACTICE: MULCH TILL

Definition: Mulch till is managing the amount, orientation, and distribution of crop and other plant residue on the soil surface year round while limiting the soil-disturbing activities used to grow crops in systems where the entire field surface is tilled prior to planting.

Planning: Plans and specifications should be prepared for each site according to planning criteria. Plans for implementing mulch till shall include:

Parameters:	Establishment Guidelines:
Field Location and Acres	Map all locations with exact acres
Tillage Practices	Chisels, Sweeps, Harrows, etc.

Implementation and verification:

- Residues shall be uniformly distributed over the entire field.
- Residue shall not be burned.
- Planned residue levels will be maintained from harvest until after planting.
- Verify practice after primary crop is planted in spring.

Potential Benefits	
Soil Erosion	3
Soil Quality	2
Water Quality	2
Air Quality	3
Fish and Wildlife	2

1= Poor, 2= Fair, 3= Good, 4= Very Good, 5= Excellent

Reference: USDA-NRCS

For more information, visit <u>https://efotg.sc.egov.usda.gov/</u>

PRACTICE: NO TILL

Definition: No till is managing the amount, orientation, and distribution of crop and other plant residue on the soil surface year round while limiting soil-disturbing activities to only those necessary to place nutrients, condition residue, and plant crops.

Planning: Plans and specifications should be prepared for each site according to planning criteria. Plans for the implementation of no till shall include:

Parameters:	Establishment Guidelines:
Field Location and Acres	Map all locations with exact acres to be planted
Tillage practice prior	Mulboard, Chisel, Strip, etc.

Implementation and verification:

- All residues shall be uniformly distributed over the entire field and planned residue levels maintained from harvest until after planting.
- Residue shall not be burned or removed.
- Soil loss and soil particulate reductions will be met by maintaining the necessary amount and orientation of crop residue, by managing the amount of soil disturbance, and by implementing additional conservation practices as necessary to address the identified resource concerns.

Potential Benefits	
Soil Erosion	4
Soil Quality	2
Water Quality	3
Air Quality	3
Fish and Wildlife	2

1= Poor, 2= Fair, 3= Good, 4= Very Good, 5= Excellent

Reference: USDA-NRCS

For more information, visit https://efotg.sc.egov.usda.gov/

PRACTICE: NUTRIENT MANAGEMENT

Definition: Nutrient management is a component of sustainable crop production systems, but to minimize the risk of agricultural non-point source pollution of surface and ground water resources, fertilizers must be applied in a correct manner. The "4R" nutrient stewardship principles depend on field- and site-specific characteristics, such as soil, cropping system, management techniques, and climate.

Planning: Plans and specifications should be prepared for each site according to planning criteria. Plans for the implementation of nutrient management include:

Parameters:	Establishment Guidelines:
Right Source	Ensure a balanced supply of essential nutrients, considering
	both natural available sources and the characteristics of
	specific products, in plant available forms.
Right Rate	Assess and make decisions based on soil nutrient supply and
	plant demand.
Right Time	Assess and make decisions based on the dynamics of crop
	uptake, soil supply nutrient loss risks and field operation
	logistics.
Right Place	Address root-soil dynamics and nutrient movement and
	manage spatial variability within the field to meet site
	specific crop needs and limit potential losses from field.

Implementation and verification:

- Manure always should be spread on fields uniformly and at the planned rates.
- Crop nutrient uptake is most efficient if manure is spread as close as possible to the time when plants will use the nutrients. The longer the manure is in the soil before the crops take up the nutrients, the more susceptible those nutrients will be to loss.
- Incorporation of manure into the soil as soon as possible after it is spread results in the greatest nutrient availability to crops and reduces nutrient losses, pollution, and odor. One-half inch of soaking rainfall without significant runoff is comparable to incorporation of surface-applied manure.

Potential Benefits	
Soil Erosion	1
Soil Quality	2
Water Quality	4
Air Quality	4
Fish and Wildlife	2

1= Poor, 2= Fair, 3= Good, 4= Very Good, 5= Excellent

Reference: USDA-NRCS/NutirnetStewardship.com

For more information, visit <u>https://efotg.sc.egov.usda.gov/</u>

PRACTICE: STREAMBANK PROTECTION

Definition: Stream bank Protection is used to stabilize and protect eroding banks of streams or constructed channels, and shorelines of lakes, reservoirs, or estuaries.

Planning: Plans and specifications should be prepared for each sit according to planning criteria. Plans for the establishment of a stream bank protection shall include:

Parameters:	Establishment Guidelines:
Field Location	Map all locations
Layout, Survey and Design	Properly lay out stakes, flags and survey for construction. Design project per NRCS Standards and Specifications.
Seed and tree Species	Will vary depending on what type or vegetation chosen
Seeding Rates	Varies depending on type of vegetation chosen
Seeding Dates	Ranges from April 15 th to November 1st
Establishment Procedure	Depends on vegetation chosen

Implementation and verification:

- Since each reach of a channel, lake, or estuary is unique, measures for streambank and shoreline protection must be installed according to a plan and adapted to the specific site.
- Minimum clearing shall be performed to accomplish the project. Existing vegetation shall be preserved as much as possible.
- Excavated material shall not be placed in wetlands, water bodies, or other areas or habitats requiring avoidance, and shall be stabilized to prevent erosion.
- Practice should be inspected before, during and after construction. Periodic site visits should be conducted to make sure practice is working as designed.

Potential Benefits	
Soil Erosion	4
Soil Quality	1
Water Quality	2
Air Quality	1
Fish and Wildlife	3

1= Poor, 2= Fair, 3= Good, 4= Very Good, 5= Excellent

Reference: USDA-NRCS, For more information, visit <u>https://efotg.sc.egov.usda.gov/</u>

APPENDIX F: Funding Opportunities Available for Best Management Practices in the Green Lake Watershed, WI

EPA 319 Watershed Grants

In Wisconsin, these monies are split into several different grant opportunities managed by Wisconsin Department of Natural Resources (WIDNR):

Targeted Runoff Management Grant Program

The Targeted Runoff Management (TRM) Grant Program offers competitive grants for local governments for controlling nonpoint source (NPS) pollution. Grants reimburse costs for agriculture or urban runoff management practices in targeted, critical geographic areas with surface water or groundwater quality concerns. Application Deadline: April 15th, 2016. All projects accepted will start on January 1st, 2017. Please review <u>http://dnr.wi.gov/Aid/TargetedRunoff.html</u> for more details.

Surface Water Grants

Includes: Lake Management Planning, Lake Protection & Classification, River Protection, River Planning and Aquatic Invasive Species Control. Application deadlines vary. Please review http://dnr.wi.gov/Aid/SurfaceWater.html for more details.

Urban Nonpoint Source & Storm Water Management Grant Program

The Urban Nonpoint Source & Storm Water (UNPS&SW) Management Grant Program offers competitive grants to local governments. Grants reimburse costs of planning or construction projects controlling urban nonpoint source and storm water runoff pollution. Eligible areas are urban lands with population density of at least 1,000 people per square mile or non-permitted commercial or municipally-owned industrial use. Projects may be in areas that are expected to become urban within 20 years. Application Deadline: April 15th, 2016. All projects accepted will start on January 1st, 2017. Please review <u>http://dnr.wi.gov/Aid/UrbanNonpoint.html</u> for more details.

USDA-NRCS Farm Bill Programs

- a. Environmental Quality Incentives Program
- b. Wildlife Habitat Incentives Program
- c. Wetland Reserve Program
- d. Conservation Reserve Program
- e. Conservation Reserve Enhancement Program
- f. Conservation Security Program
- g. National Water Quality Initiative

Please review: <u>http://www.nrcs.usda.gov/wps/portal/nrcs/main/national/programs/farmbill/</u> for more details. All programs above have different rules and regulations along with deadlines for applications.

USDA-NRCS Conservation Innovation Grants (CIG)

NRCS provides funding opportunities for agriculturalists and others through various programs. Conservation Innovation Grants (CIG) is a voluntary program intended to stimulate the development and adoption of innovative conservation approaches and technologies while leveraging Federal investment in environmental enhancement and protection, in conjunction with agricultural production. Under CIG, Environmental Quality Incentives Program funds are used to award competitive grants to non-Federal governmental or nongovernmental organizations, Tribes, or individuals. Please review:

<u>http://www.nrcs.usda.gov/wps/portal/nrcs/main/national/programs/financial/cig/</u> for more information.

Regional Conservation Partnership Program (RCPP)

The Regional Conservation Partnership Program (RCPP) promotes coordination between NRCS and its partners to deliver conservation assistance to producers and landowners. NRCS provides assistance to producers through partnership agreements and through program contracts or easement agreements. RCPP combines the authorities of four former conservation programs – the Agricultural Water Enhancement Program, the Chesapeake Bay Watershed Program, the Cooperative Conservation Partnership Initiative and the Great Lakes Basin Program. Assistance is delivered in accordance with the rules of EQIP, CSP, ACEP and HFRP; and in certain areas the Watershed Operations and Flood Prevention Program. Please review http://www.nrcs.usda.gov/wps/portal/nrcs/main/national/programs/farmbill/rcpp/ for more information.

Great Lakes Restoration Initiative (GLRI)

The Great Lakes Restoration Initiative accelerates efforts to protect and restore the largest system of fresh surface water in the world — the Great Lakes. The four main initiatives are: Cleaning up Great Lakes areas of concern, preventing and controlling invasive species, reducing nutrient runoff that contributes to harmful/nuisance algal blooms and restoring habitat to protect native species. Please review: <u>http://greatlakesrestoration.us/</u> for more information.

Fund for Lake Michigan

The mission of the Fund for Lake Michigan is to support efforts, and in particular those in southeastern Wisconsin, that enhance the health of Lake Michigan and its shoreline and tributary river systems for the benefit of the people, plants and animals that depend upon the system for water, recreation and commerce. Please review: <u>http://www.fundforlakemichigan.org/</u> for more information.

APPENDIX G: Case Studies

The following case study are good example of coalitions, partnerships, and projects that successful utilize frameworks to improve water quality and enhance our ecosystems. We recommend that the Green Lake Association review these programs to aid in implementing the GLASP outline.

Coalition to Support Iowa Farmers (CSIF) (IA):

The CSIF is a coalition that helps farmers raise livestock successful and responsibly manage changes to their livestock farms. Founded in 2004, their mission is to advocate and to help implement best management practices that support lowa's farms in raising livestock responsible and successfully. The CSIF achieves their mission by help farmers navigate state and federal legislations, provide building site analysis, consulting on safeguarding the environment, and enhancing neighbor relations. For more information, visit <u>http://www.supportfarmers.com/</u>.

Wilmette Partnership, Rogue River Project (OR):

The Wilmette Partnership is an organization that helps build resilience in both natural ecosystems and in their surrounding communities. The partnership relies on contributions from a diverse coalition of partners from the fields of conservation, business, government, agriculture, and science.

In 2010, the Wilmette Partnership worked with the City of Munford to address thermal pollution in the Rogue River. To address this issue, they helped build a program for the city to meet water quality need by investing in restoration projects that shade the river. The Willamette Partnership adapted its Ecosystem Credit Accounting System to translate the environmental benefit of riparian forest restoration into term that meet the city's water quality obligations. To achieve this, the brought together city staff, private landowners, restoration professional, and conservation organizations. The Fresh water trust works with landowners, nurseries and other contractors to design and install restoration project, which are then sold to the City's water facility to meet their regulations

Great Miami River Watershed Water Quality Credit Trading Program (OH):

The Great Miami River Watershed Water Quality Credit Trading Program was started in 2004 as a pilot to evaluate the viability of water quality credit trading as an approach to reduce nutrients in the Watershed. The pilot establishes a new sustainable local source of revenue for agricultural producers to implement conservation practices in cooperation with wastewater treatment plants. For more information, visit <u>http://www.miamiconservancy.org/water/quality_credit.asp</u>

Saginaw Bay Watershed Conservation Partnership (MI):

The Saginaw Bay Watershed Conservation Partnership has 35 partners and an NRCS offer of \$10 million. <u>Saginaw Bay</u>, and embayment of Lake Huron, hosts the largest coastal wetland in Lake Huron and faces numerous water quality challenges, including loss of habitat, excessive nutrients and sediment, and algal blooms. This project will set ecologically relevant implementation goals, track progress using new online tools, and harness the influence of agribusiness as a complementary delivery mechanism in order to reach goals of treating 55,000 acres with conservation practices through EQIP and restoring 400 acres of wetlands through ACEP by 2019. The partners will track effectiveness using the Great Lakes Watershed Management System to quantify acres implemented and total sediment and nutrients reduced annually while also working with project partners to monitor long-term trends in fish community health. For more information, visit <u>www.nature.org</u>.

Delmarva Whole System Conservation Partnership (MD):

The Delmarva Whole System Conservation Partnership worked in the <u>Chesapeake Bay</u> to bring more than \$10 million of funding and 30 partners to help farmers implement conservation practices that improve water quality and wildlife habitat while supporting farm operations. The project will develop a unique public-private partnership in collaboration with the Delaware Maryland Agribusiness Association and will target conservation practices where they will achieve the greatest outcomes by improving fertilizer efficiency and reducing excess nitrogen, phosphorus, and sediment flowing into the Chesapeake Bay. Targeted wetland restoration will also be used to trap pollution, provide flood storage, and create habitat for wildlife. For more information, visit (<u>www.nature.org</u>).